期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
1
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
在线阅读 下载PDF
Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory 被引量:1
2
作者 张稳稳 吴朝新 +3 位作者 刘迎文 董军 严学文 侯洵 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期139-143,共5页
We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estima... We investigate the thermal characteristics of standard organic light-emitting diodes (OLEDs) using a simple and clear 1D thermal model based on the basic heat transfer theory. The thermal model can accurately estimate the device temperature, which is linearly with electrical input power. The simulation results show that there is almost no temperature gradient within the OLED device working under steady state conditions. Furthermore, thermal analysis simulation results show that the surface properties (convective heat transfer coetficient and surface emissivity) of the substrate or cathode can significantly affect the temperature distribution of the OLED. 展开更多
关键词 OLEDS Thermal analysis of Organic Light Emitting Diodes Based on Basic heat Transfer Theory EML
在线阅读 下载PDF
Phase change analysis of an underwater glider propelled by the ocean's thermal energy 被引量:4
3
作者 KONG Qiao-ling MA Jie 《Journal of Marine Science and Application》 2007年第4期37-43,共7页
The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the en... The phase change characteristic of the power source of an underwater glider propelled by the ocean's thermal energy is the key factor in glider attitude control. A numerical model has been established based on the enthalpy method to analyze the phase change heat transfer process under convective boundary conditions. Phase change is not an isothermal process, but one that occurs at a range of temperature. The total melting time of the material is very sensitive to the surrounding temperature. When the temperature of the surroundings decreases 8 degrees, the total melting time increases 1.8 times. But variations in surrounding temperature have little effect on the initial temperature of phase change, and the slope of the temperature time history curve remains the same. However, the temperature at which phase change is completed decreases significantly. Our research shows that the phase change process is also affected by container size, boundary conditions, and the power source's cross sectional area. Materials stored in 3 cylindrical containers with a diameter of 38ram needed the shortest phase change time. Our conclusions should be helpful in effective design of underwater glider power systems. 展开更多
关键词 phase change heat transfer analysis ocean thermal energy underwater glider
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部