Aim In diabetic patients, metformin appears to provide cardiovascular protection that cannot be attribu- ted only to its antihyperglycemic effects. Metformin is also known as the AMP-activated protein kinase (AMPK) ...Aim In diabetic patients, metformin appears to provide cardiovascular protection that cannot be attribu- ted only to its antihyperglycemic effects. Metformin is also known as the AMP-activated protein kinase (AMPK) ac- tivator. Our previous study suggested that metformin inhibits transforming growth factor-β1 (TGF-β1) production in a mouse heart failure model of pressure overload. TGF-β1 is a key factor in cardiac fibrosis and is usually induced by Angiotensin Ⅱ (Ang Ⅱ ) in the pressure overload mouse models. This study investigated the effect of metformin on cardiac fibrosis and TGF-β production induced by AngII and the underlying mechanisms. Methods C57/BL6 wild-type and AMPKα2 knockout mice were used. AngII (3 mg · kg-1 · d-1) was infused subcutaneously into mice for 7 days. Adult mouse cardiac fibroblasts were isolated and treated with AngII ( 1 μmol · L-1) and/or met- formin (1 mmol · L-l). Results In C57/BL6 mice, metformin inhibits AngII-induced cardiac fibrosis. In cardi-ac fibroblasts, metformin inhibits TGF-β1 expression and production induced by AngII. AMPK inhibitor, com- pound C, reversed the effects of metformin. In vivo, AMPKα2 deficiency further increases AngII-induced TGF-β1 production. In cardiac fibroblasts, metformin inhibited AngII induced hepatocyte nuclear factor4 (HNF4ot protein level increase and HNF4α binding with TGF-β1 promoter using chromatin immunoprecipitation assay. In vivo, AMPKα2 deficiency further increased AngII-induced HNF4α protein level. Using HNF4α adenovirus, overexpress- ing HNF4α led to a 1.5-fold increase in TGF-β1 mRNA expression. HNF4a siRNA blocked AngII induced TGF- β1 production. Luciferase reporter with deleted HNF4a binding sites showed decreased TGFbl transcriptional activ- ity induced by AngII. In AMPK or2-/- heart, the inhibition of metformin on HNF4a protein was attenuated. Con- clusion Metformin inhibits AngII induced cardiac fibrosis and TGF-β1 production through AMPK activation. The underlying mechanism is that AMPK activation inhibits AngII induced HNF4α and then decreases TGF-β1 expres- sion.展开更多
OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like g...OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.展开更多
文摘Aim In diabetic patients, metformin appears to provide cardiovascular protection that cannot be attribu- ted only to its antihyperglycemic effects. Metformin is also known as the AMP-activated protein kinase (AMPK) ac- tivator. Our previous study suggested that metformin inhibits transforming growth factor-β1 (TGF-β1) production in a mouse heart failure model of pressure overload. TGF-β1 is a key factor in cardiac fibrosis and is usually induced by Angiotensin Ⅱ (Ang Ⅱ ) in the pressure overload mouse models. This study investigated the effect of metformin on cardiac fibrosis and TGF-β production induced by AngII and the underlying mechanisms. Methods C57/BL6 wild-type and AMPKα2 knockout mice were used. AngII (3 mg · kg-1 · d-1) was infused subcutaneously into mice for 7 days. Adult mouse cardiac fibroblasts were isolated and treated with AngII ( 1 μmol · L-1) and/or met- formin (1 mmol · L-l). Results In C57/BL6 mice, metformin inhibits AngII-induced cardiac fibrosis. In cardi-ac fibroblasts, metformin inhibits TGF-β1 expression and production induced by AngII. AMPK inhibitor, com- pound C, reversed the effects of metformin. In vivo, AMPKα2 deficiency further increases AngII-induced TGF-β1 production. In cardiac fibroblasts, metformin inhibited AngII induced hepatocyte nuclear factor4 (HNF4ot protein level increase and HNF4α binding with TGF-β1 promoter using chromatin immunoprecipitation assay. In vivo, AMPKα2 deficiency further increased AngII-induced HNF4α protein level. Using HNF4α adenovirus, overexpress- ing HNF4α led to a 1.5-fold increase in TGF-β1 mRNA expression. HNF4a siRNA blocked AngII induced TGF- β1 production. Luciferase reporter with deleted HNF4a binding sites showed decreased TGFbl transcriptional activ- ity induced by AngII. In AMPK or2-/- heart, the inhibition of metformin on HNF4a protein was attenuated. Con- clusion Metformin inhibits AngII induced cardiac fibrosis and TGF-β1 production through AMPK activation. The underlying mechanism is that AMPK activation inhibits AngII induced HNF4α and then decreases TGF-β1 expres- sion.
基金supported by National Natural Science Foundation of China(81502123 and81330081)Natural Science Foundation of Anhui Province(1308085QH130)Anhui Province Nature Science Foundation in University(KJ2014A119)
文摘OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.