期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A new grey forecasting model based on BP neural network and Markov chain 被引量:6
1
作者 李存斌 王恪铖 《Journal of Central South University of Technology》 EI 2007年第5期713-718,共6页
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq... A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1). 展开更多
关键词 grey forecasting model neural network Markov chain electricity demand forecasting
在线阅读 下载PDF
基于改进粒子群优化算法的灰色神经网络模型 被引量:22
2
作者 马军杰 尤建新 陈震 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期740-743,共4页
根据灰色神经网络的参数随机选择类似于粒子群算法中的粒子初始空间位置,采用改进粒子群算法代替梯度修正法,对网络参数进行了处理,并通过寻找粒子群算法中的最优个体,建立了基于改进粒子群算法的灰色神经网络,提高了预测模型的稳健性... 根据灰色神经网络的参数随机选择类似于粒子群算法中的粒子初始空间位置,采用改进粒子群算法代替梯度修正法,对网络参数进行了处理,并通过寻找粒子群算法中的最优个体,建立了基于改进粒子群算法的灰色神经网络,提高了预测模型的稳健性和精度.通过解决短期订货量问题,与反向传播(BP)神经网络、灰色神经网络、没有改进的粒子群灰色神经网络算法和基于遗传算法的灰色神经网络等方法进行了比较.分析结果表明,基于改进粒子群算法的灰色神经网络计算更为方便,并具有更好的逼近能力和预测精度.为优化网络模型参数提供了一种新方法,并拓展了预测模型的研究思路. 展开更多
关键词 粒子群算法 灰色神经网络模型 预测
在线阅读 下载PDF
基于SAPSO优化灰色神经网络的空中目标威胁估计 被引量:28
3
作者 刘海波 王和平 沈立顶 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第1期25-32,共8页
针对目标威胁估计有很多不确定性的特点,分析了传统目标威胁估计方法和灰色神经网络初始参数随机选择的不足。采用模拟退火改进的粒子群算法代替梯度修正法,对网络参数初始值进行寻优,并通过该方法搜寻到的最优粒子,建立了基于模拟退火... 针对目标威胁估计有很多不确定性的特点,分析了传统目标威胁估计方法和灰色神经网络初始参数随机选择的不足。采用模拟退火改进的粒子群算法代替梯度修正法,对网络参数初始值进行寻优,并通过该方法搜寻到的最优粒子,建立了基于模拟退火粒子群算法优化的灰色神经网络模型,以提高预测模型的稳健性和精确度。与灰色神经网络和没有改进的粒子群灰色神经网络等方法进行比较,仿真实验结果表明,模拟退火粒子群优化的灰色神经网络具有很好的预测能力,可以准确地完成空中目标威胁估计。 展开更多
关键词 灰色系统 神经网络 模拟退火 粒子群算法 目标威胁估计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部