This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, ...This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications.展开更多
Chip multiprocessors(CMPs) allow thread level parallelism,thus increasing performance.However,this comes with the cost of temperature problem.CMPs require more power,creating non uniform power map and hotspots.Aiming ...Chip multiprocessors(CMPs) allow thread level parallelism,thus increasing performance.However,this comes with the cost of temperature problem.CMPs require more power,creating non uniform power map and hotspots.Aiming at this problem,a thread scheduling algorithm,the greedy scheduling algorithm,was proposed to reduce the thermal emergencies and to improve the throughput.The greedy scheduling algorithm was implemented in the Linux kernel on Intel's Quad-Core system.The experimental results show that the greedy scheduling algorithm can reduce 9.6%-78.5% of the hardware dynamic thermal management(DTM) in various combinations of workloads,and has an average of 5.2% and up to 9.7% throughput higher than the Linux standard scheduler.展开更多
In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms accordin...In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.展开更多
A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. F...A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.展开更多
The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the...The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the outcomes of past decisions and opportunities of future ones. Reinforcement learning,which is fundamental to sequential decision-making,consists of the following components: 1 A set of decisions epochs; 2 A set of environment states; 3 A set of available actions to transition states; 4 State-action dependent immediate rewards for each action.At each decision,the environment state provides the decision maker with a set of available actions from which to choose. As a result of selecting a particular action in the state,the environment generates an immediate reward for the decision maker and shifts to a different state and decision. The ultimate goal for the decision maker is to maximize the total reward after a sequence of time steps.This paper will focus on an archetypal example of reinforcement learning,the stochastic multi-armed bandit problem. After introducing the dilemma,I will briefly cover the most common methods used to solve it,namely the UCB and εn- greedy algorithms. I will also introduce my own greedy implementation,the strict-greedy algorithm,which more tightly follows the greedy pattern in algorithm design,and show that it runs comparably to the two accepted algorithms.展开更多
To minimize the total transmit power for multicast service in an orthogonal frequency division multiplexing(OFDM) downlink system,resource allocation algorithms that adaptively allocate subcarriers and bits are prop...To minimize the total transmit power for multicast service in an orthogonal frequency division multiplexing(OFDM) downlink system,resource allocation algorithms that adaptively allocate subcarriers and bits are proposed.The proposed algorithms select users with good channel conditions for each subcarrier to reduce the transmit power,while guaranteeing each user's instantaneous minimum rate requirement.The resource allocation problem is first formulated as an integer programming(IP) problem,and then,a full search algorithm that achieves an optimal solution is presented.To reduce the computation load,a suboptimal algorithm is proposed.This suboptimal algorithm decouples the joint resource allocation problem by separating subcarrier and bit allocation.Greedy-like algorithms are employed in both procedures.Simulation results illustrate that the proposed algorithms can significantly reduce the transmit power compared with the conventional multicast approach and the performance of the suboptimal algorithm is close to the optimum.展开更多
基金supported by the National Natural Science Foundation of China(61172159)
文摘This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications.
基金Projects(2009AA01Z124,2009AA01Z102) supported by the National High Technology Research and Development Program of ChinaProjects(60970036,61076025) supported by the National Natural Science Foundation of China
文摘Chip multiprocessors(CMPs) allow thread level parallelism,thus increasing performance.However,this comes with the cost of temperature problem.CMPs require more power,creating non uniform power map and hotspots.Aiming at this problem,a thread scheduling algorithm,the greedy scheduling algorithm,was proposed to reduce the thermal emergencies and to improve the throughput.The greedy scheduling algorithm was implemented in the Linux kernel on Intel's Quad-Core system.The experimental results show that the greedy scheduling algorithm can reduce 9.6%-78.5% of the hardware dynamic thermal management(DTM) in various combinations of workloads,and has an average of 5.2% and up to 9.7% throughput higher than the Linux standard scheduler.
基金supported by the National Natural Science Foundation of China(61201134)the 111 Project(B08038)
文摘In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.
文摘A simple and effective greedy algorithm for image approximation is proposed. Based on the matching pursuit approach, it is characterized by a reduced computational complexity benefiting from two major modifications. First, it iteratively finds an approximation by selecting M atoms instead of one at a time. Second, the inner product computations are confined within only a fraction of dictionary atoms at each iteration. The modifications are implemented very efficiently due to the spatial incoherence of the dictionary. Experimental results show that compared with full search matching pursuit, the proposed algorithm achieves a speed-up gain of 14.4-36.7 times while maintaining the approximation quality.
文摘The process of making decisions is something humans do inherently and routinely,to the extent that it appears commonplace. However,in order to achieve good overall performance,decisions must take into account both the outcomes of past decisions and opportunities of future ones. Reinforcement learning,which is fundamental to sequential decision-making,consists of the following components: 1 A set of decisions epochs; 2 A set of environment states; 3 A set of available actions to transition states; 4 State-action dependent immediate rewards for each action.At each decision,the environment state provides the decision maker with a set of available actions from which to choose. As a result of selecting a particular action in the state,the environment generates an immediate reward for the decision maker and shifts to a different state and decision. The ultimate goal for the decision maker is to maximize the total reward after a sequence of time steps.This paper will focus on an archetypal example of reinforcement learning,the stochastic multi-armed bandit problem. After introducing the dilemma,I will briefly cover the most common methods used to solve it,namely the UCB and εn- greedy algorithms. I will also introduce my own greedy implementation,the strict-greedy algorithm,which more tightly follows the greedy pattern in algorithm design,and show that it runs comparably to the two accepted algorithms.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2008AA01Z226)
文摘To minimize the total transmit power for multicast service in an orthogonal frequency division multiplexing(OFDM) downlink system,resource allocation algorithms that adaptively allocate subcarriers and bits are proposed.The proposed algorithms select users with good channel conditions for each subcarrier to reduce the transmit power,while guaranteeing each user's instantaneous minimum rate requirement.The resource allocation problem is first formulated as an integer programming(IP) problem,and then,a full search algorithm that achieves an optimal solution is presented.To reduce the computation load,a suboptimal algorithm is proposed.This suboptimal algorithm decouples the joint resource allocation problem by separating subcarrier and bit allocation.Greedy-like algorithms are employed in both procedures.Simulation results illustrate that the proposed algorithms can significantly reduce the transmit power compared with the conventional multicast approach and the performance of the suboptimal algorithm is close to the optimum.