期刊文献+
共找到2,320篇文章
< 1 2 116 >
每页显示 20 50 100
Vision-aided inertial navigation for low altitude aircraft with a downward-viewing camera
1
作者 ZHOU Ruihu TONG Mengqi GAO Yongxin 《Journal of Systems Engineering and Electronics》 2025年第3期825-834,共10页
Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small... Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small areas.This paper considers the problem of vision-aided inertial navigation(VIN)for aircrafts equipped with a strapdown inertial navigation system(SINS)and a downward-viewing camera.This is different from the traditional VIO problems in a larger working area with more precise inertial sensors.The goal is to utilize visual information to aid SINS to improve the navigation performance.In the multistate constraint Kalman filter(MSCKF)framework,we introduce an anchor frame to construct necessary models and derive corresponding Jacobians to implement a VIN filter to directly update the position in the Earth-centered Earth-fixed(ECEF)frame and the velocity and attitude in the local level frame by feature measurements.Due to its filtering-based property,the proposed method is naturally low computational demanding and is suitable for applications with high real-time requirements.Simulation and real-world data experiments demonstrate that the proposed method can considerably improve the navigation performance relative to the SINS. 展开更多
关键词 visual inertial odometry(VIO) strapdown inertial navigation system(SINS) multi-state constraint Kalman filter(MSCKF)
在线阅读 下载PDF
Free-walking:Pedestrian inertial navigation based on dual foot-mounted IMU 被引量:2
2
作者 Qu Wang Meixia Fu +6 位作者 Jianquan Wang Lei Sun Rong Huang Xianda Li Zhuqing Jiang Yan Huang Changhui Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期573-587,共15页
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor... The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance. 展开更多
关键词 Indoor positioning inertial navigation system(INS) Zero-velocity update(ZUPT) Internet of things(IoTs) Location-based service(LBS)
在线阅读 下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
3
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast Search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
在线阅读 下载PDF
Error model identification of inertial navigation platform based on errors-in-variables model 被引量:6
4
作者 Liu Ming Liu Yu Su Baoku 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期388-393,共6页
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo... Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method. 展开更多
关键词 errors-in-variables model total least squares method inertial navigation platform error model identification
在线阅读 下载PDF
An improved computation scheme of strapdown inertial navigation system using rotation technique 被引量:8
5
作者 张伦东 练军想 +1 位作者 吴美平 胡小平 《Journal of Central South University》 SCIE EI CAS 2012年第5期1258-1266,共9页
To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a... To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles. 展开更多
关键词 strapdown inertial navigation system rotation technique navigation computation scheme error characteristic
在线阅读 下载PDF
Suppression of the G-sensitive drift of laser gyro in dual-axis rotational inertial navigation system 被引量:3
6
作者 YU Xudong WANG Zichao +2 位作者 FAN Huiying WEI Guo WANG Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期822-830,共9页
The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer ca... The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system. 展开更多
关键词 inertial navigation rotational inertial navigation system(INS) laser gyro G-sensitive drift
在线阅读 下载PDF
Method of improving pedestrian navigation performance based on chest card
7
作者 CHENG Hao GAO Shuang +2 位作者 CAI Xiaowen WANG Yuxuan WANG Jie 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期987-998,共12页
With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.T... With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.The pedestrian naviga-tion based on radio is subject to environmental occlusion lead-ing to the degradation of positioning accuracy.The pedestrian navigation based on micro-electro-mechanical system inertial measurement unit(MIMU)is less susceptible to environmental interference,but its errors dissipate over time.In this paper,a chest card pedestrian navigation improvement method based on complementary correction is proposed in order to suppress the error divergence of inertial navigation methods.To suppress atti-tude errors,optimal feedback coefficients are established by pedestrian motion characteristics.To extend navigation time and improve positioning accuracy,the step length in subsequent movements is compensated by the first step length.The experi-mental results show that the positioning accuracy of the pro-posed method is improved by more than 47%and 44%com-pared with the pure inertia-based method combined with step compensation and the traditional complementary filtering com-bined method with step compensation.The proposed method can effectively suppress the error dispersion and improve the positioning accuracy. 展开更多
关键词 pedestrian navigation micro-electro-mechanical sy-stem(MEMS) inertial navigation complementary filtering
在线阅读 下载PDF
A data and physical model dual-driven based trajectory estimator for long-term navigation
8
作者 Tao Feng Yu Liu +2 位作者 Yue Yu Liang Chen Ruizhi Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期78-90,共13页
Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The ... Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively. 展开更多
关键词 Long-term navigation Wearable inertial sensors Bi-LSTM QSMF Data and physical model dual-driven
在线阅读 下载PDF
Point mass filter based matching algorithm in gravity aided underwater navigation 被引量:10
9
作者 HAN Yurong WANG Bo +1 位作者 DENG Zhihong FU Mengyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期152-159,共8页
Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital mo... Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital model and the resolution is 2’ × 2’,a filter model based on vehicle position is derived and the particularity of inertial navigation system(INS) output is employed to estimate a parameter in the system model. Meanwhile, the matching algorithm based on point mass filter(PMF) is applied and several optimal selection strategies are discussed. It is obtained that the point mass filter algorithm based on the deterministic resampling method has better practicability. The reliability and the accuracy of the algorithm are verified via simulation tests. 展开更多
关键词 gravity-aided inertial navigation system(INS) navigation point mass filter(PMF) deterministic resampling
在线阅读 下载PDF
基于多解分离的GNSS/Inertial组合系统完好性监测 被引量:13
10
作者 刘海颖 岳亚洲 +1 位作者 杨毅钧 蒋德杰 《中国惯性技术学报》 EI CSCD 北大核心 2012年第1期63-68,共6页
在卫星导航系统的完好性监测中,通常的接收机自主完好性监测过分依赖于可见星的几何分布,并且不能提供足够的可用性。针对该问题,给出了一种基于多解分离的惯性辅助卫星导航完好性监测方法。在对基于奇偶矢量的接收机自主完好性监测法... 在卫星导航系统的完好性监测中,通常的接收机自主完好性监测过分依赖于可见星的几何分布,并且不能提供足够的可用性。针对该问题,给出了一种基于多解分离的惯性辅助卫星导航完好性监测方法。在对基于奇偶矢量的接收机自主完好性监测法及其可用性分析基础上,设计了基于多解分离的卫星导航/惯性组合导航紧耦合滤波器,推导了其完好性监测以及可用性计算方法。通过仿真实验,从可用性、阶跃故障和斜坡故障的完好性监测效果等方面,对两种方法进行了对比分析。结果表明,多解分离法在5颗星时仍能定位故障,水平保护限值可以降低50 m,对于1 m/s的斜坡故障检测时间可以缩短71 s,显著提高了完好性监测性能。 展开更多
关键词 卫星导航 惯性导航 完好性监测 多解分离法 奇偶矢量法
在线阅读 下载PDF
SINS/CNS/GPS integrated navigation algorithm based on UKF 被引量:27
11
作者 Haidong Hu Xianlin Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期102-109,共8页
A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonl... A new nonlinear algorithm is proposed for strapdown inertial navigation system (SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation systems. The algorithm employs a nonlinear system error model which can be modified by unscented Kalman filter (UKF) to give predictions of local filters. And these predictions can be fused by the federated Kalman filter. In the system error model, the rotation vector is introduced to denote vehicle's attitude and has less variables than the quaternion. Also, the UKF method is simplified to estimate the system error model, which can both lead to less calculation and reduce algorithm implement time. In the information fusion section, a modified federated Kalman filter is proposed to solve the singular covariance problem. Specifically, the new algorithm is applied to maneuvering vehicles, and simulation results show that this algorithm is more accurate than the linear integrated navigation algorithm. 展开更多
关键词 navigation system integrated navigation unscented Kalman filter federated Kalman filter strapdown inertial navigation system celestial navigation system global psitioning system.
在线阅读 下载PDF
IAE-adaptive Kalman filter for INS/GPS integrated navigation system 被引量:14
12
作者 Bian Hongwei Jin Zhihua Tian Weifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期502-508,共7页
A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kal... A marine INS/GPS adaptive navigation system is presented. GPS with two antenna providing vessel' s altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAEAKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstra- ted that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter. 展开更多
关键词 inertial navigation system global positioning system integrated navigation system adaptive Kalman filter
在线阅读 下载PDF
A tightly coupled rotational SINS/CNS integrated navigation method for aircraft 被引量:7
13
作者 NING Xiaolin YUAN Weiping LIU Yanhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期770-782,共13页
Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated... Strapdown inertial navigation system(SINS)/celestial navigation system(CNS)integrated navigation is widely used to achieve long-time and high-precision autonomous navigation for aircraft.In general,SINS/CNS integrated navigation can be divided into two integrated modes:loosely coupled integrated navigation and tightly coupled integrated navigation.Because the loosely coupled SINS/CNS integrated system is only available in the condition of at least three stars,the latter one is becoming a research hotspot.One major challenge of SINS/CNS integrated navigation is obtaining a high-precision horizon reference.To solve this problem,an innovative tightly coupled rotational SINS/CNS integrated navigation method is proposed.In this method,the rotational SINS error equation in the navigation frame is used as the state model,and the starlight vector and star altitude are used as measurements.Semi-physical simulations are conducted to test the performance of this integrated method.Results show that this tightly coupled rotational SINS/CNS method has the best navigation accuracy compared with SINS,rotational SINS,and traditional tightly coupled SINS/CNS integrated navigation method. 展开更多
关键词 celestial navigation system(CNS) rotation modulation technology ROTATIONAL STRAPDOWN inertial navigation system(SINS) ROTATIONAL SINS/CNS integrated navigation
在线阅读 下载PDF
An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network 被引量:14
14
作者 Hai-fa Dai Hong-wei Bian +1 位作者 Rong-ying Wang Heng Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期334-340,共7页
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem... In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively. 展开更多
关键词 inertial navigation system(INS) Global navigation satellite system(GNSS) Integrated navigation RECURRENT neural network(RNN)
在线阅读 下载PDF
Accuracy improvement of GPS/MEMS-INS integrated navigation system during GPS signal outage for land vehicle navigation 被引量:15
15
作者 Honglei Qin Li Cong Xingli Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期256-264,共9页
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff... To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods. 展开更多
关键词 functional coefficient autoregressive (FAR) global po- sitioning system (GPS) micro electromechanical system (MEMS) inertial navigation system (INS) self-constructive adaptive neuro- fuzzy inference system (SCANFIS).
在线阅读 下载PDF
Transfer alignment of shipborne inertial-guided weapon systems 被引量:4
16
作者 Sun Changyue Deng Zhenglong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期348-353,共6页
The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed.... The transfer alignment problem of the shipborne weapon inertial navigation system (INS) is addressed. Specifically, two transfer alignment algorithms subjected to the ship motions induced by the waves are discussed. To consider the limited maneuver level performed by the ship, a new filter algorithm for transfer alignment methods using velocity and angular rate matching is first derived. And then an improved method using integrated velocity and integrated angular rate matching is introduced to reduce the effect of the ship body flexure. The simulation results show the feasibility and validity of the proposed transfer alignment algorithms. 展开更多
关键词 transfer alignment inertial navigation system Kalman filtering ship flexure
在线阅读 下载PDF
Time-asynchrony identification between inertial sensors in SIMU 被引量:1
17
作者 Gongmin Yan Xi Sun +2 位作者 Jun Weng Qi Zhou Yongyuan Qin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期346-352,共7页
Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-async... Traditional strapdown inertial navigation system (SINS) algorithm studies are based on ideal measurements from gy- ros and accelerometers, while in the actual strapdown inertial measurement unit (SIMU), time-asynchrony between each iner- tial sensor is inevitable. Testing principles and methods for time- asynchrony parameter identification are studied. Under the single- axis swaying environment, the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation. It is found that the gyro time- asynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing. After gyro testing and synchronization, the single-axis tumble test method is introduced for the testing of each accelerometer time-asynchrony with respect to the ideal gyro triad. Accelerometer time-asynchrony parame- ter identification models are established using SINS specific force equation. Finally, all of the relative time-asynchrony parameters between inertial sensors are well identified by using fiber optic gyro SIMU as experimental verification. 展开更多
关键词 strapdown inertial navigation system(SINS) time-asynchrony pseudo-coning error velocity error
在线阅读 下载PDF
UWB/INS紧组合变分贝叶斯自适应滤波算法 被引量:1
18
作者 徐天河 王森 代培培 《导航定位学报》 北大核心 2025年第2期1-8,共8页
针对超宽带(UWB)与惯性导航系统(INS)紧组合在实际环境中面临非线性误差和噪声干扰的问题,提出一种变分贝叶斯自适应卡尔曼滤波(VBAKF)的UWB/INS紧组合导航算法:通过引入变分贝叶斯方法,自适应调整系统噪声统计特性未知情况下的滤波精度... 针对超宽带(UWB)与惯性导航系统(INS)紧组合在实际环境中面临非线性误差和噪声干扰的问题,提出一种变分贝叶斯自适应卡尔曼滤波(VBAKF)的UWB/INS紧组合导航算法:通过引入变分贝叶斯方法,自适应调整系统噪声统计特性未知情况下的滤波精度,提升滤波性能,并引入高程约束模型,增强高程方向的定位精度;建立UWB/INS紧组合模型,给出VBAKF滤波算法,对比分析VBAKF与传统自适应卡尔曼滤波(AKF)的状态估计性能差异。实验结果显示,VBAKF方法在东、北、天方向的定位精度相比于传统方法可分别提高16.13%、21.43%和6.25%,表明VBAKF方法能显著提高系统状态估计的准确性和可靠性,有效提高UWB/INS组合导航系统在实测环境下的适应能力。 展开更多
关键词 变分贝叶斯 超宽带(UWB) 惯性导航系统(INS) 紧组合 组合导航
在线阅读 下载PDF
激光雷达和IMU融合的煤矿掘进巷道三维重建方法
19
作者 毛清华 柴建权 +2 位作者 陈彦璋 薛旭升 王川伟 《煤炭科学技术》 北大核心 2025年第2期351-362,共12页
针对煤矿掘进巷道存在典型非结构化、特征退化、大尺度环境,巷道三维重建易出现位姿估计精度低、累计漂移误差大等问题,提出了一种激光雷达和惯导(Inertial Measurement Unit,IMU)融合的煤矿掘进巷道三维重建方法。该方法通过迭代卡尔... 针对煤矿掘进巷道存在典型非结构化、特征退化、大尺度环境,巷道三维重建易出现位姿估计精度低、累计漂移误差大等问题,提出了一种激光雷达和惯导(Inertial Measurement Unit,IMU)融合的煤矿掘进巷道三维重建方法。该方法通过迭代卡尔曼滤波将激光雷达观测模型的残差函数和IMU预测模型的先验状态偏差紧耦合,经状态更新得到更为精确的后验状态,提升了退化环境下的位姿估计精度。为降低巷道三维模型重建过程中的累计漂移误差,提出基于体素化广义迭代最近点(Voxelized Generalized ICP,VGICP)的回环检测算法,以基于体素的单分布到多分布的方式进行配准,完成对回环帧的选取及精确匹配,实现回环帧的全局位姿校正,有效降低煤矿巷道三维重建的累计漂移误差。相比于A-LOAM、LEGO-LOAM、LINS算法,所提算法在位姿估计精度和全局一致性方面显著提升。公开数据集试验结果表明:所提算法的RPE和APE均方根误差分别为0.271 8和0.500 8,与其他算法相比分别降低了53.14%、50.97%、48.31%,和50.41%、47.99%、47.49%。开展了2种模拟巷道场景三维重建试验,结果表明所提算法构建的室内长廊模型各区域在长度、宽度和高度方向的误差均在1.2%以内;所提算法构建的煤矿巷道三维模型与真实巷道空间分布一致,总体距离退化误差仅为2.46%,较其他3种算法重建性能分别提升了66.12%、65.30%、70.43%。在煤矿主体实验室掘进巷道进行三维重建试验,结果表明三维重建结果在长度、宽度和高度方向的平均误差百分比分别为0.47%、0.75%和0.67%,可以实现掘进巷道三维精确建模。 展开更多
关键词 煤矿巷道 三维重建 激光雷达 惯导 迭代卡尔曼滤波 回环检测
在线阅读 下载PDF
基于AEKF和Mahony滤波融合的姿态解算方法
20
作者 吴英 张燚鑫 +2 位作者 彭慧 宋睿敏 刘宇 《压电与声光》 北大核心 2025年第3期500-507,共8页
为了解决低成本惯性测量单元数据精度受限、噪声大和漂移严重的问题,提出了一种基于自适应扩展卡尔曼滤波与Mahony滤波融合的姿态解算方法。该方法通过Mahony滤波实时估算姿态,利用AEKF动态调整过程噪声和量测噪声,优化姿态估算结果。... 为了解决低成本惯性测量单元数据精度受限、噪声大和漂移严重的问题,提出了一种基于自适应扩展卡尔曼滤波与Mahony滤波融合的姿态解算方法。该方法通过Mahony滤波实时估算姿态,利用AEKF动态调整过程噪声和量测噪声,优化姿态估算结果。通过静态实验、姿态精度实验和实际场景实验验证了算法的有效性。实验结果表明,融合算法在俯仰角、横滚角和航向角的精度上优于基于EKF和Mahony滤波融合算法,实际场景闭环误差减少了52.8%。该方法能有效抑制噪声和漂移,提高姿态解算精度,为复杂环境下的高精度姿态解算提供了可靠的解决方案。 展开更多
关键词 惯性测量单元 惯性导航系统 自适应扩展卡尔曼滤波 互补滤波 姿态解算
在线阅读 下载PDF
上一页 1 2 116 下一页 到第
使用帮助 返回顶部