期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental investigation on stable displacement mechanism and oil recovery enhancement of oxygen-reduced air assisted gravity drainage 被引量:3
1
作者 CHEN Xiaolong LI Yiqiang +4 位作者 LIAO Guangzhi ZHANG Chengming XU Shanzhi QI Huan TANG Xiang 《Petroleum Exploration and Development》 2020年第4期836-845,共10页
The effects of gravity,capillary force,and viscous force on the migration characteristics of oil and gas interface in oxygen-reduced air-assisted gravity drainage(OAGD)were studied through a two-dimensional visualizat... The effects of gravity,capillary force,and viscous force on the migration characteristics of oil and gas interface in oxygen-reduced air-assisted gravity drainage(OAGD)were studied through a two-dimensional visualization model.The effects of bond number,capillary number and low-temperature oxidation on OAGD recovery were studied by long core displacement experiments.On this basis,the low-temperature oxidation number was introduced and its relationship with the OAGD recovery was established.The results show that the shape and changing law of oil and gas front are mainly influenced by gravity,capillary force and viscous force.When the bond number is constant(4.52×10-4),the shape of oil-gas front is controlled by capillary number.When the capillary number is less than 1.68×10-3,the oil and gas interface is stable.When the capillary number is greater than 2.69×10-2,the oil and gas interface shows viscous fingering.When the capillary number is between 1.68×10-3 and 2.69×10-2,the oil and gas interface becomes capillary fingering.The core flooding experiments results show that for OAGD stable flooding,before the gas breakthrough,higher recovery is obtained in higher gravity number and lower capillary number.In this stage,gravity is predominant in controlling OAGD recovery and the oil recovery could be improved by reducing injection velocity.After gas breakthrough,higher recovery was obtained in lower gravity and higher capillary numbers,which means that the viscous force had a significant influence on the recovery.Increasing gas injection velocity in this stage is an effective measure to improve oil recovery.The low-temperature oxidation number has a good correlation with the recovery and can be used to predict the OAGD recovery. 展开更多
关键词 oxygen-reduced air drainage gravity drainage experiment oil displacement mechanism recovery influence factor
在线阅读 下载PDF
Prediction of oil recovery in naturally fractured reservoirs subjected to reinfiltration during gravity drainage using a new scaling equation
2
作者 AGHABARARI Amirhossein GHAEDI Mojtaba RIAZI Masoud 《Petroleum Exploration and Development》 2020年第6期1307-1315,共9页
By comparing numerical simulation results of single-porosity and dual-porosity models,the significant effect of reinfiltration to naturally fractured reservoirs was confirmed.A new governing equation was proposed for ... By comparing numerical simulation results of single-porosity and dual-porosity models,the significant effect of reinfiltration to naturally fractured reservoirs was confirmed.A new governing equation was proposed for oil drainage in a matrix block under the reinfiltration process.Utilizing inspectional analysis,a dimensionless equation suitable for scaling of recovery curves for matrix blocks under reinfiltration has been obtained.By the design of experiments,test cases with different rock and fluid properties were defined to confirm the scope of the presented equation.The defined cases were simulated using a realistic numerical simulation approach.This method can estimate the oil amount getting into the matrix block through reinfiltration,help simulate the oil drainage process in naturally fractured reservoirs accurately,and predict the recovery rate of matrix block in the early to middle periods of production.Using the defined scaling equation in the dual-porosity model can improve the accuracy of the predicted recovery rate. 展开更多
关键词 naturally fractured reservoir gravity drainage reinfiltration scaling equation dual-porosity simulation inspectional analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部