期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
Low-temperature graphitization of lignin via Co-assisted electrolysis in molten salt 被引量:1
1
作者 Shijie Li Wei-Li Song +3 位作者 Xue Han Qingqing Cui Yan-li Zhu Shuqiang Jiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1449-1458,共10页
The ever-growing energy demand and environmental issues have stimulated the development of sustainable energy technologies.Herein,an efficient and environmentally friendly electrochemical transformation technology was... The ever-growing energy demand and environmental issues have stimulated the development of sustainable energy technologies.Herein,an efficient and environmentally friendly electrochemical transformation technology was proposed to prepare highly graphitized carbon materials from an abundant natural resource-lignin (LG).The preparation process mainly includes pyrolytic carbonization of raw LG material and electrochemical conversion of amorphous carbon precursor.Interestingly,with the assistance of Co catalyst,the graphitization degree of the products was significantly improved,in which the mechanism was the removal of heteroatoms in LG and the rearrangement of carbon atoms into graphite lattice.Furthermore,tunable microstructures (nanoflakes) under catalytic effects could also be observed by controlling the electrolytic parameters.Compared with the products CN1 (without catalyst) and CN5 (with 10%catalyst),the specific surface area are 158.957 and 202.246 m^(2)g^(-1),respectively.When used as the electrode material for lithium-ion batteries,CN5 delivered a competitive specific capacity of~350 m Ah g^(-1)(0.5 C) compared with commercial graphite.The strategy proposed in this work provides an effective way to extract value-added graphite materials from lignin and can be extended to the graphitization conversion of any other amorphous carbon precursor materials. 展开更多
关键词 LIGNIN Graphitic carbon Electrochemical conversion Lithium-ion batteries
在线阅读 下载PDF
Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering 被引量:12
2
作者 Kangyu Zou Peng Cai +6 位作者 Baowei Wang Cheng Liu Jiayang Li Tianyun Qiu Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期239-257,共19页
The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium... The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium ion capacitors(LICs).Here,an orientateddesigned pore size distribution(range from 0.5 to 200 nm)and graphitization engineering strategy of carbon materials through regulating molar ratios of Zn/Co ions has been proposed,which provides an effective platform to deeply evaluate the capacitive behaviors of carbon cathode.Significantly,after the systematical analysis cooperating with experimental result and density functional theory calculation,it is uncovered that the size of solvated PF6-ion is about 1.5 nm.Moreover,the capacitive behaviors of carbon cathode could be enhanced attributed to the controlled pore size of 1.5-3 nm.Triggered with synergistic effect of graphitization and appropriate pore size distribution,optimized carbon cathode(Zn90Co10-APC)displays excellent capacitive performances with a reversible specific capacity of^50 mAh g-1at a current density of 5 A g-1.Furthermore,the assembly pre-lithiated graphite(PLG)//Zn90Co10-APC LIC could deliver a large energy density of 108 Wh kg-1 and a high power density of 150,000 W kg-1 as well as excellent long-term ability with 10,000 cycles.This elaborate work might shed light on the intensive understanding of the improved capacitive behavior in LiPF<sub>6 electrolyte and provide a feasible principle for elaborate fabrication of carbon cathodes for LIC systems. 展开更多
关键词 Carbon materials Pore size regulation graphitization Capacitive behavior Lithium ion capacitor
在线阅读 下载PDF
Insight into the microstructural evolution of anthracite during carbonization-graphitization process from the perspective of materialization 被引量:8
3
作者 Huihui Zeng Baolin Xing +7 位作者 Yijun Cao Bing Xu Lei Hou Hui Guo Song Cheng Guangxu Huang Chuanxiang Zhang Qi Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1397-1406,共10页
Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstr... Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstructural evolution of anthracite in the temperature range of 1000–2800 ℃ was systematically investigated to provide a guidance for the microstructural regulation of coal-based carbon materials.The results indicate that the microstructure of anthracite undergoes an important change during carbonization-graphitization process. As the temperature increases, aromatic layers in anthracite gradually transform into disordered graphite microcrystals and further grow into ordered graphite microcrystals, and then ordered graphite microcrystals are laterally linked to form pseudo-graphite phase and eventually transformed into highly ordered graphite-like sheets. In particular, 2000–2200 ℃ is a critical temperature region for the qualitative change of ordered graphite crystallites to pseudo-graphite phase,in which the relevant structural parameters including stacking height, crystallite lateral size and graphitization degree show a rapid increase. Moreover, both aromaticity and graphitization degree have a linear positive correlation with carbonization-graphitization temperature in a specific temperature range.Besides, after initial carbonization, some defect structures in anthracite such as aliphatic carbon and oxygen-containing functional groups are released in the form of gaseous low-molecular volatiles along with an increased pore structure, and the intermediates derived from minerals could facilitate the conversion of sp^(3) amorphous carbon to sp^(2) graphitic carbon. This work provides a valuable reference for the rational design of microstructure of coal-based carbon materials. 展开更多
关键词 ANTHRACITE Microstructural evolution Carbonization-graphitization Graphite microcrystals MATERIALIZATION
在线阅读 下载PDF
Thermodynamic and kinetic study on interfacial reaction and diamond graphitization of Cu Fe-based diamond composite 被引量:2
4
作者 李文生 张杰 +4 位作者 董洪锋 禇克 王顺才 刘毅 李亚明 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期524-530,共7页
Cu-Fe based diamond composites used for saw-blade segments are directly fabricated by vacuum and pressureassisted sintering. The carbide forming elements Cr and Ti are added to improve interfacial bonding between diam... Cu-Fe based diamond composites used for saw-blade segments are directly fabricated by vacuum and pressureassisted sintering. The carbide forming elements Cr and Ti are added to improve interfacial bonding between diamond and the Cu-Fe matrix. The interfacial reactions between diamond/graphite and Cr or Ti, and diamond graphitization are investigated by thermodynamics/kinetics analyses and experimental methods. The results show that interfacial reactions and graphitization of diamond can automatically proceed thermodynamically. The Cr3C2, Cr7C3, Cr23C6, and TiC are formed at the interfaces of composites by reactions between diamond and Cr or Ti; diamond graphitization does not occur because of the kinetic difficulty at 1093 K under the pressure of 13 MPa. 展开更多
关键词 THERMODYNAMICS KINETICS diamond composites diamond graphitization
在线阅读 下载PDF
Morphological features and nanostructures generated during SiC graphitization process
5
作者 孔雯霞 端勇 +2 位作者 章晋哲 王剑心 蔡群 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期638-643,共6页
Surface morphological features and nanostructures generated during SiC graphitization process can significantly affect fabrication of high-quality epitaxial graphene on semiconductor substrates.In this work,we investi... Surface morphological features and nanostructures generated during SiC graphitization process can significantly affect fabrication of high-quality epitaxial graphene on semiconductor substrates.In this work,we investigate the surface morphologies and atomic structures during graphitization process of 4H-SiC(0001) using scanning tunneling microscopy.Our high-magnified scanning-tunneling-microscope images exhibit the appearance and gradual developments of SiC(1 × 1)nanostructures after 1100℃ cleaning treatments,irregularly distributed among carbon nanocaps and(√3×√3) reconstruction domains.A model for the formation and growth progression of SiC(1 × 1) nanostructures has been proposed.When post-annealing temperature reaches 1300 ℃,the nanoholes and nanoislands can be observed on the surface,and multilayer graphene is often detected lying on the top surface of those nanoislands.These results provide profound insights into the complex evolution process of surface morphology during SiC thermal decomposition and will shed light on fabrication of SiC nanostructures and graphene nanoflakes. 展开更多
关键词 scanning tunneling microscopy(STM) SiC graphitization epitaxial graphene NANOSTRUCTURES
在线阅读 下载PDF
Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage 被引量:8
6
作者 Junxian Hu Yangyang Xie +1 位作者 Meng Yin Zhian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期327-334,共8页
Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of ... Hard carbon material is one of the most promising anode materials for potassium ion batteries(PIBs)due to its distinct disordered and non-expandable framework.However,the intrinsically disordered microarchitecture of hard carbon results in low electric conductivity and poor rate capability.Herein,nitrogendoped and partially graphitized hard carbons(NGHCs)derived from commercial coordination compound precursor-ethylenediaminetetraacetic acid(EDTA)disodium cobalt salt hydrate are designed and prepared as high-performance PIBs anode materials.By means of a facile annealing method,nitrogen elements and graphitic domains can be controllably introduced to NGHCs.The resulting NGHCs show structural merits of mesoporous construction,nitrogen doping and homogeneous graphitic domains,which ensures fast kinetics and electron transportation.Applying in anode for PIBs,NGHCs exhibit robust rate capability with high reversible capacity of 298.8 m Ah g^-1 at 50 m A g^-1,and stable cycle stability of 137.6 mAh g^-1 at 500 m A g^-1 after 1000 cycles.Moreover,the ex situ Raman spectra reveal a mixture"adsorption-intercalation mechanism"for potassium storage of NGHCs.More importantly,full PIBs by pairing with perylenetetracarboxylic dianhydride(PTCDA)cathode demonstrate the promising potential of practical application.In terms of commercial precursor,facile synthesis and long cycle lifespan,NGHCs represent a brilliant prospect for practical large-scale applications. 展开更多
关键词 Hard carbon Nitrogen doping Graphitic domains Potassium ion batteries Adsorption-intercalation mechanism
在线阅读 下载PDF
Engineering g-C_(3)N_(4)based materials for advanced photocatalysis:Recent advances 被引量:2
7
作者 Xin-Lian Song Lei Chen +2 位作者 Li-Jiao Gao Jin-Tao Ren Zhong-Yong Yuan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期166-197,共32页
Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti... Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications. 展开更多
关键词 Graphitic carbon nitride g-C_(3)N_(4) Design strategies PHOTOCATALYSIS PHOTOCATALYSTS Reaction mechanism
在线阅读 下载PDF
Eliminating H_(2)O/HF and regulating interphase with bifunctional tolylene-2,4-diisocyanate(TDI)additive for long life Li-ion battery 被引量:2
8
作者 Xueyi Zeng Xiang Gao +8 位作者 Peiqi Zhou Haijia Li Xin He Weizhen Fan Chaojun Fan Tianxiang Yang Zhen Ma Xiaoyang Zhao Junmin Nan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期519-528,I0011,共11页
Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challengi... Lithium-ion batteries(LIBs)featuring a Ni-rich cathode exhibit increased specific capacity,but the establishment of a stable interphase through the implementation of a functional electrolyte strategy remains challenging.Especially when the battery is operated under high temperature,the trace water present in the electrolyte will accelerate the hydrolysis of the electrolyte and the resulting HF will further erode the interphase.In order to enhance the long-term cycling performance of graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)LIBs,herein,Tolylene-2,4-diisocyanate(TDI)additive containing lone-pair electrons is employed to formulate a novel bifunctional electrolyte aimed at eliminating H_(2)O/HF generated at elevated temperature.After 1000 cycles at 25℃,the battery incorporating the TDI-containing electrolyte exhibits an impressive capacity retention of 94%at 1 C.In contrast,the battery utilizing the blank electrolyte has a lower capacity retention of only 78%.Furthermore,after undergoing 550 cycles at 1 C under45℃,the inclusion of TDI results in a notable enhancement of capacity,increasing it from 68%to 80%.This indicates TDI has a favorable influence on the cycling performance of LIBs,especially at elevated temperatures.The analysis of the film formation mechanism suggests that the lone pair of electrons of the isocyanate group in TDI play a crucial role in inhibiting the generation of H_(2)O and HF,which leads to the formation of a thin and dense interphase.The existence of this interphase is thought to substantially enhance the cycling performance of the LIBs.This work not only improves the performance of graphite/NCM811 batteries at room temperature and high temperature by eliminating H_(2)O/HF but also presents a novel strategy for advancing functional electrolyte development. 展开更多
关键词 Graphite/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)battery Tolylene-2 4-diisocyanate Long-cycling performance H_(2)O/HF eliminated additive
在线阅读 下载PDF
An efficient recycling strategy to eliminate the residual“impurities”while heal the damaged structure of spent graphite anodes
9
作者 Dan Yang Ying Yang +7 位作者 Haoran Du Yongsheng Ji Mingyuan Ma Yujun Pan Xiaoqun Qi Quan Sun Kaiyuan Shi Long Qie 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1027-1034,共8页
The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate ... The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate their useless components(mainly the degraded solid electrolyte interphase,SEI)and reconstruct their damaged structure.Herein,a facile and efficient strategy is proposed to recycle the spent graphite on the basis of the careful investigation of the composition of the cycled graphite anodes and the rational design of the regeneration processes.The regenerated graphite,which is revitalized by calcination treatment and acid leaching,delivers superb rate performance and a high specific capacity of 370 mAh g^(-1)(~99% of its theoretical capacity)after 100 cycles at 0.1 C,superior to the commercial graphite anodes.The improved electrochemical performance could be attributed to unchoked Li^(+) transport channels and enhanced charge transfer reaction due to the effective destruction of the degraded SEI and the full recovery of the damaged structure of the spent graphite.This work clarifies that the electrochemical performance of the regenerated graphite could be deteriorated by even a trace amount of the residual“impurity”and provides a facile method for the efficient regeneration of graphite anodes. 展开更多
关键词 GRAPHITE ANODE REGENERATION Solid electrolyte interphase Spent lithium-ion battery
在线阅读 下载PDF
The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
10
作者 Yi Yang Xia-Lin Zhong +3 位作者 Lei Xu Zhuo-Lin Yang Chong Yan Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期453-459,I0009,共8页
Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on th... Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure. 展开更多
关键词 GRAPHITE Hard carbon Fast charging Lithium plating Lithium-ion batteries
在线阅读 下载PDF
Edge and lithium concentration effects on intercalation kinetics for graphite anodes
11
作者 Keming Zhu Denis Kramer Chao Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期337-347,I0009,共12页
Graphite interfaces are an important part of the anode in lithium-ion batteries(LIBs),significantly influencing Li intercalation kinetics.Graphite anodes adopt different stacking sequences depending on the concentrati... Graphite interfaces are an important part of the anode in lithium-ion batteries(LIBs),significantly influencing Li intercalation kinetics.Graphite anodes adopt different stacking sequences depending on the concentration of the intercalated Li ions.In this work,we performed first-principles calculations to comprehensively address the energetics and dynamics of Li intercalation and Li vacancy diffusion near the no n-basal edges of graphite,namely the armchair and zigzag-edges,at high Li concentration.We find that surface effects persist in stage-Ⅱ that bind Li strongly at the edge sites.However,the pronounced effect previously identified at the zigzag edge of pristine graphite is reduced in LiC_(12),penetrating only to the subsurface site,and eventually disappearing in LiC_(6).Consequently,the distinctive surface state at the zigzag edge significantly impacts and restrains the charging rate at the initial lithiation of graphite anodes,whilst diminishes with an increasing degree of lithiation.Longer diffusion time for Li hopping to the bulk site from either the zigzag edge or the armchair edge in LiC_(6) was observed during high state of charge due to charge repulsion.Effectively controlling Li occupation and diffusion kinetics at this stage is also crucial for enhancing the charge rate. 展开更多
关键词 Graphite anode EDGE Interface Lithium-ion batteries Density functional theory
在线阅读 下载PDF
Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations
12
作者 Legeng Yu Nan Yao +5 位作者 Yu-Chen Gao Zhong-Heng Fu Bo Jiang Ruiping Li Cheng Tang Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期299-305,I0008,共8页
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano... Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes. 展开更多
关键词 Lithium batteries Graphite N-DOPING Electric double layer Molecular dynamics Constant potential method Electrode potential
在线阅读 下载PDF
Rational design of carbon skeleton interfaces for highly reversible sodium metal battery anodes
13
作者 Fenqiang Luo Taiyu Lyu +5 位作者 Jie Liu Peiwan Guo Junkai Chen Xiaoshan Feng Dechao Wang Zhifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期404-413,共10页
Sodium metal batteries(SMBs)have attracted increasing attention over time due to their abundance of sodium resources and low cost.However,the widespread application of SMBs as a viable technology remains a great chall... Sodium metal batteries(SMBs)have attracted increasing attention over time due to their abundance of sodium resources and low cost.However,the widespread application of SMBs as a viable technology remains a great challenge,such as uneven metallic deposition and dendrite formation during cycling.Carbon skeletons as sodiophilic hosts can alleviate the dendrite formation during the plating/stripping.For the carbon skeleton,how to rationalize the design sodiophilic interfaces between the sodium metal and carbon species remains key to developing desirable Na anodes.Herein,we fabricated four kinds of structural features for carbon skeletons using conventional calcination and flash Joule heating.The roles of conductivity,defects,oxygen content,and the distribution of graphite for the deposition of metallic sodium were discussed in detail.Based on interface engineering,the J1600 electrode,which has abundant Na-C species on its surface,showed the highest sodiophilic.There are uniform and rich F-Na species distributed in the inner solid electrolyte interface layer.This study investigated the different Na-deposition behavior in carbon hosts with distinct graphitic arrangements to pave the way for designing and optimizing advanced electrode materials. 展开更多
关键词 Carbon skeleton Graphited structure Deposition mechanism Sodiummetal batteries
在线阅读 下载PDF
Residual fluoride self-activated effect enabling upgraded utilization of recycled graphite anode
14
作者 Shuzhe Yang Qingqing Gao +7 位作者 Yukun Li Hongwei Cai Xiaodan Li Gaoxing Sun Shuxin Zhuang Yujin Tong Hao Luo Mi Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期24-31,I0002,共9页
Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure... Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs. 展开更多
关键词 Spent lithium-ion batteries Recycled graphite anode FLUORIDE Self-activated effect Upgraded utilization
在线阅读 下载PDF
Spent graphite regeneration:Exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption
15
作者 Yu Dong Zihao Zeng +7 位作者 Zhengqiao Yuan Bing Wang Hai Lei Wenqing Zhao Wuyun Ai Lingchao Kong Yue Yang Peng Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期656-669,共14页
Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta... Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite. 展开更多
关键词 Spent graphite regeneration REPAIR Temperature treatment
在线阅读 下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
16
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive Structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
在线阅读 下载PDF
Stable operation of highly loaded pure Si-Fe anode under ambient pressure via carboxy silane-directed robust solid electrolyte interphase
17
作者 Guntae Lim Dong Guk Kang +6 位作者 Hyeon Gyu Lee Yen Hai Thi Tran Kihun An Junghyun Choi Kwang Chul Roh Do Youb Kim Seung-Wan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期568-576,共9页
Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of... Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of diacetoxydimethylsilane(DAMS)additive-directed SEI stabilization is proposed for a stable operation of Si-0.33FeSi_(2)(named as Si-Fe)anode without graphite,which provides siloxane inorganics and organics enrichment that compensate insufficient passivation of fluoroethylene carbonate(FEC)additive and reduce a dependence on FEC.Unprecedented stable cycling performance of highly loaded(3.5 mA h cm^(-2))pure Si-Fe anode is achieved with 2 wt%DAMS combined with 9 wt%FEC additives under ambient pressure,yielding high capacity 1270 mA h g^(-1)at 0.5 C and significantly improved capacity retention of 81% after 100 cycles,whereas short circuit and rapid capacity fade occur with FEC only additive.DAMS-directed robust SEI layer dramatically suppresses swelling and particles crossover through separator,and therefore prevents short circuit,demonstrating a possible operation of pure Si or Sidominant anodes in the next-generation high-energy-density and safe LIBs. 展开更多
关键词 High-energy Li-ion battery Pure Si-Fe anode without graphite Silane additive SEI layer Suppressed swelling
在线阅读 下载PDF
Tackling application limitations of high-safetyγ-butyrolactone electrolytes:Exploring mechanisms and proposing solutions
18
作者 Haojun Wu Zhangyating Xie +9 位作者 Guanjie Li Lei Zheng Zhiwei Zhao Jiarong He Yanbin Shen Jiahao Hu Zhangquan Peng Guiming Zhong Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期193-201,I0005,共10页
Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Bu... Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Butyrolactone(GBL)has emerged as a promising solvent;however,its incompatibility with graphite anode has hindered its application.This limitation necessitates a comprehensive investigation into the underlying mechanisms and potential solutions.In this study,we achieve a molecular-level understanding of the perplexing interphase formation process by employing in-situ spectroelectrochemical techniques and density function calculations.Our findings reveal that,even at high salt concentrations,GBL consistently occupies the primary Li^(+)solvation sheath,leading to extensive GBL decomposition and the formation of a high-impedance and inorganic-poor solid-electrolyte interphase(SEI)layer.Contrary to manipulating solvation structures,our research demonstrates that the utilization of filmforming additives with higher reduction potential facilitates the pre-establishment of a robust SEI film on the graphite anode.This approach effectively inhibits GBL decomposition and significantly enhances the battery's lifespan.This study provides the first reported intrinsic understanding of the unique GBLgraphite incompatibility and offers valuable insights for the development of wide-temperature and high-safety LIBs. 展开更多
关键词 γ-Butyrolactone/Graphite incompatibility Unique solvation structure SEI film Lithium-ion batteries
在线阅读 下载PDF
基于光子晶体的物质的量浓度测量研究 被引量:5
19
作者 帕孜来提 阿不都热苏力 阿卜杜外力 《激光杂志》 CAS CSCD 北大核心 2014年第2期28-29,共2页
采用平面波展开法模拟graphite格子二维光子晶体的禁带结构,研究了三种溶液温度和质量摩尔浓度分别对光子带隙的影响。其中半乳糖、木糖和核糖溶液分别为graphite格子二维光子晶体的空气孔介质材料。结果表明,当质量摩尔浓度恒定而温度... 采用平面波展开法模拟graphite格子二维光子晶体的禁带结构,研究了三种溶液温度和质量摩尔浓度分别对光子带隙的影响。其中半乳糖、木糖和核糖溶液分别为graphite格子二维光子晶体的空气孔介质材料。结果表明,当质量摩尔浓度恒定而温度变化,光子带隙随其发生变化;而当溶液温度恒定时,光子带隙随溶液质量摩尔浓度发生变化。较高质量摩尔浓度和较高温度的溶液更容易形成光子带隙。在某些情况下,核糖溶液比半乳糖和木糖溶液更容易实现光子带隙。 展开更多
关键词 光子晶体 平面波展开法 graphite格子 溶液
在线阅读 下载PDF
Temperature dependence of the thickness and morphology of epitaxial graphene grown on SiC (0001) wafers
20
作者 郝昕 陈远富 +7 位作者 李萍剑 王泽高 刘竞博 贺加瑞 樊睿 孙继荣 张万里 李言荣 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期438-441,共4页
Epitaxiai graphene is synthesized by silicon sublimation from the Si-terminated 6H SiC substrate. The effects of graphitization temperature on the thickness and surface morphology of epitaxial graphene are investigate... Epitaxiai graphene is synthesized by silicon sublimation from the Si-terminated 6H SiC substrate. The effects of graphitization temperature on the thickness and surface morphology of epitaxial graphene are investigated. X-ray photoelectron spectroscopy spectra and atomic force microscopy images reveal that the epitaxial graphene thickness increases and the epitaxial graphene roughness decreases with the increase in graphitization temperature. This means that the thickness and roughness of epitaxial graphene films can be modulated by varying the graphitization temperature. In addition, the electrical properties of epitaxial graphene film are also investigated by Hall effect measurement. 展开更多
关键词 epitaxial graphene thickness MORPHOLOGY graphitization temperature
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部