期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Multi-scale Graph-matching Based Kernel for Character Recognition from Natural Scenes 被引量:2
1
作者 Cun-Zhao SHI Chun-Heng WANG +2 位作者 Bai-Hua XIAO Yang ZHANG Song GAO 《自动化学报》 EI CSCD 北大核心 2014年第4期751-756,共6页
认出从自然景色图象提取的字符由于 intraclass 变化的高度是相当挑战性的。在这份报纸,我们为景色特性识别建议一个多尺度的匹配图的基于的核。以便捕获人物的内在地特殊的结构,每幅图象被与多尺度的图象格子联系的几张图代表。当也... 认出从自然景色图象提取的字符由于 intraclass 变化的高度是相当挑战性的。在这份报纸,我们为景色特性识别建议一个多尺度的匹配图的基于的核。以便捕获人物的内在地特殊的结构,每幅图象被与多尺度的图象格子联系的几张图代表。当也越过邻近的节点保存空间一致性时,二幅图象的类似被匹配二张图(图象) 因此定义为最佳精力,它在图为每个节点发现最好的火柴。计算类似是合适的为支持向量机器(SVM ) 构造一个核。与多尺度的格子匹配图获得的多重核被联合以便最后的核是更柔韧的。挑战性的 Chars74k 和 ICDAR03-CH 数据集上的试验性的结果证明建议方法比现状方法更好表现。 展开更多
关键词 字符识别 自然场景 多尺度 内核 配基 场景图 图形表示 最佳匹配
在线阅读 下载PDF
一种基于图热核扩散卷积的网络入侵检测方法 被引量:3
2
作者 景永俊 王浩 +1 位作者 邵堃 王晓峰 《计算机工程与科学》 北大核心 2025年第3期459-471,共13页
网络入侵检测是保护计算资源和数据免受网络攻击的重要手段。近年来,基于深度学习的方法在入侵检测领域取得了显著进展,但仍存在有效特征提取困难和过度依赖手工标注数据等问题。针对上述问题,提出一种基于图热核扩散卷积的半监督入侵... 网络入侵检测是保护计算资源和数据免受网络攻击的重要手段。近年来,基于深度学习的方法在入侵检测领域取得了显著进展,但仍存在有效特征提取困难和过度依赖手工标注数据等问题。针对上述问题,提出一种基于图热核扩散卷积的半监督入侵检测方法,该方法在流量统计特征的基础上,以源IP和目标IP地址为节点,以它们之间的交互关系为边,构建入侵检测主机交互图。通过融合网络流量统计特征与潜在的图结构特征,该方法利用图热核扩散传播机制,聚合丰富的邻域信息以学习节点的特征表示,这些节点表示能够使得下游的入侵检测任务更准确地识别异常节点和恶意连接,提升入侵检测的性能。在CIC-IDS-2017和CIC-IDS-20182个数据集上进行的实验结果表明,该方法能够有效捕获网络流量数据中的复杂拓扑结构和节点之间的关系特征,仅通过少量的流量特征和标签信息就能够学习节点的低维向量表示。此外,通过对节点表示的聚类分析和可视化,能够揭示攻击节点在网络中的社区结构和连接特征,这为新型或变种攻击的预防提供了参考。 展开更多
关键词 网络入侵检测 图热核扩散 图表示学习 图神经网络
在线阅读 下载PDF
基于多核图注意力网络的有源配电网故障定位方法
3
作者 梁伟宸 王亚娟 +3 位作者 周放歌 刘博 李烜 肖仕武 《现代电力》 北大核心 2025年第4期788-798,共11页
基于人工智能的配电网故障定位技术高度依赖训练数据,一旦配电网拓扑结构发生改变,故障定位模型的定位准确度就会显著下降。为解决上述问题,提出了一种基于多核图注意力网络的配电网故障定位方法,将配电网的电气节点和线路映射为图注意... 基于人工智能的配电网故障定位技术高度依赖训练数据,一旦配电网拓扑结构发生改变,故障定位模型的定位准确度就会显著下降。为解决上述问题,提出了一种基于多核图注意力网络的配电网故障定位方法,将配电网的电气节点和线路映射为图注意力网络中图的顶点和边,根据相邻顶点之间故障特征的相似度计算注意力系数,根据节点与周边节点的连接关系构成图多核注意力网络,计算得到各节点状态,确定故障位置。该方法把顶点特征之间的相关性更好地融入到故障定位模型中,提高了故障定位模型对配电网拓扑变化的适应能力。最后,搭建了IEEE33节点配电网系统来进行验证,仿真结果表明,所提的故障定位模型具有定位准确率高、鲁棒性好的优点,并且当配电网的拓扑结构发生改变时,该模型依然能够保持较高的故障定位准确率。 展开更多
关键词 有源配电网 故障定位 核函数 图注意力网络
在线阅读 下载PDF
基于Weisfeiler-Lehman核增强的无监督BIM构件检索方法
4
作者 扈慧强 贺长雁 +2 位作者 刘小军 贾金原 高路 《图学学报》 北大核心 2025年第5期1123-1133,共11页
针对建筑行业对构件检索的迫切需求,提出一种面向工业基础类(IFC)数据特点的无监督建筑信息模型(BIM)构件检索方法。充分利用IFC标准中的语义和几何信息,构建了构件属性图(PAG)作为构件特征,并结合PAG的多属性通道,提出基于Weisfeiler-L... 针对建筑行业对构件检索的迫切需求,提出一种面向工业基础类(IFC)数据特点的无监督建筑信息模型(BIM)构件检索方法。充分利用IFC标准中的语义和几何信息,构建了构件属性图(PAG)作为构件特征,并结合PAG的多属性通道,提出基于Weisfeiler-Lehman(WL)核增强的PAG同构预测思路,以实现BIM构件检索。该方法支持以2个IFC文档作为输入,其中文档A代表待检索的构件,文档B则为构件库,最终返回B中与A相似的构件。主要贡献在于:①提出一个无须数据预处理且兼容语义信息的BIM构件检索框架;②引入BIM构件的PAG特征构建方法,同时,给出WL图核增强的PAG同构预测方法;③设计了无监督的收敛性判断策略,通过分析预测结果中的属性差异及时判断算法的收敛状态。实验结果表明,该方法的PAG同构测试能在不超过3次迭代的情况下收敛,实验环境下BIM构件的同构测试不超过1 s,构件搜索的平均准确率达95%。 展开更多
关键词 建筑构件 Weisfeiler-Lehman核 检索 无监督 图同构
在线阅读 下载PDF
基于图自动编码器和梯度决策树集成的lncRNA-疾病关联预测方法
5
作者 李明强 李然 +2 位作者 刘琪 杜晶颐 李慧慧 《现代电子技术》 北大核心 2025年第12期61-66,共6页
长链非编码RNA(lncRNA)的异常表达与人类疾病的发生发展密切相关。采用计算方法预测lncRNA与疾病的潜在关联可显著降低生物学实验验证的成本。针对现有机器学习方法易受噪声干扰且预测精度不足的问题,设计一种新型lncRNA-疾病关联预测模... 长链非编码RNA(lncRNA)的异常表达与人类疾病的发生发展密切相关。采用计算方法预测lncRNA与疾病的潜在关联可显著降低生物学实验验证的成本。针对现有机器学习方法易受噪声干扰且预测精度不足的问题,设计一种新型lncRNA-疾病关联预测模型LDA-GADT。首先,通过计算lncRNA和疾病的高斯关联核相似性对lncRNA功能相似性和疾病语义相似性进行补充,从而得到lncRNA和疾病的综合相似度矩阵;然后,使用图自动编码器学习lncRNA-疾病对的特征表示;最后,使用基于梯度的决策树集成算法来预测lncRNA与疾病之间的关联关系。五折交叉验证实验结果表明,在lncRNA Disease数据库上,LDA-GADT模型的AUC值为0.9424,较LDNFSGB、SDLDA、RWSF-BLP和LDAenDL模型分别提升了8.46%、6.5%、1.28%和3.14%;在MNDR数据库上的AUC值为0.982 2,较上述对比模型分别提升了4.76%、2.62%、1.93%和1.14%。此外,通过对肺癌和乳腺癌进行案例分析,进一步验证了所提模型的准确性和有效性。 展开更多
关键词 lncRNA-疾病关联 关联预测 高斯关联核相似度 图自动编码器 梯度下降 决策树 特征提取
在线阅读 下载PDF
EAGLE:一种内核态及用户态中基于遥测数据图的网络遥测方案 被引量:2
6
作者 肖肇斌 崔允贺 +3 位作者 陈意 申国伟 郭春 钱清 《计算机科学》 CSCD 北大核心 2024年第2期311-321,共11页
网络遥测是一种新型的网络测量技术,具有实时性强、准确性高、开销低的特点。现有网络遥测技术存在无法收集多粒度网络数据、无法有效存储大量原始网络数据、无法快速提取及生成网络遥测信息、无法利用内核态及用户态特性设计网络遥测... 网络遥测是一种新型的网络测量技术,具有实时性强、准确性高、开销低的特点。现有网络遥测技术存在无法收集多粒度网络数据、无法有效存储大量原始网络数据、无法快速提取及生成网络遥测信息、无法利用内核态及用户态特性设计网络遥测方案等问题。为此,提出了一种融合内核态及用户态的、基于遥测数据图和同步控制块的多粒度、可扩展、覆盖全网的网络遥测机制(a nEtwork telemetry mechAnism based on telemetry data Graph in kerneL and usEr mode,EAGLE)。EAGLE设计了一种能够收集多粒度数据且数据平面上灵活可控的网络遥测数据包结构,用于获取上层应用所需的数据。此外,为快速存储、查询、统计、聚合网络状态数据,实现网络遥测数据包所需遥测数据的快速提取与生成,EAGLE提出了一种基于遥测数据图及同步控制块的网络遥测信息生成方法。在此基础上,为了最大化网络遥测机制中网络遥测数据包的处理效率,EAGLE提出了融合内核态及用户态特性的网络遥测信息嵌入架构。在Open vSwitch上实现了EAGLE方案并进行了测试,测试结果表明,EAGLE能够收集多粒度数据并快速提取与生成遥测数据,且仅增加极少量的处理时延及资源占用率。 展开更多
关键词 网络遥测 遥测效率 可编程数据平面 遥测数据图 内核空间
在线阅读 下载PDF
基于图核同构网络的图分类方法 被引量:2
7
作者 徐立祥 葛伟 +1 位作者 陈恩红 罗斌 《计算机研究与发展》 EI CSCD 北大核心 2024年第4期903-915,共13页
图表示学习已成为图深度学习领域的一个研究热点.大多数图神经网络存在过平滑现象,这类方法重点关注图节点特征,对图的结构特征关注度不高.为了提升对图结构特征的表征能力,提出了一种基于图核同构网络的图分类方法,即KerGIN.该方法首... 图表示学习已成为图深度学习领域的一个研究热点.大多数图神经网络存在过平滑现象,这类方法重点关注图节点特征,对图的结构特征关注度不高.为了提升对图结构特征的表征能力,提出了一种基于图核同构网络的图分类方法,即KerGIN.该方法首先通过图同构网络(graph isomorphism network,GIN)对图进行节点特征编码,并使用图核方法对图进行结构编码,进一步利用Nystrom方法降低图核矩阵的维度.其次借助MLP将图核矩阵与图特征矩阵对齐,通过注意力机制将图的特征编码和结构编码进行自适应加权融合,进而得到图的最终特征表示,提升了图结构特征信息的表达能力.最后在7个公开的图分类数据集上对模型进行了实验评估:与现有图表示模型相比,KerGIN模型能够在图分类准确度上有较大幅度提升,它可以增强GIN对图结构特征信息的表达能力. 展开更多
关键词 图分类 图神经网络 图核 NYSTROM方法 图注意力机制
在线阅读 下载PDF
KENN:线性结构熵的图核神经网络 被引量:1
8
作者 徐立祥 许巍 +2 位作者 陈恩红 罗斌 唐远炎 《软件学报》 EI CSCD 北大核心 2024年第5期2430-2445,共16页
图神经网络(graph neural network,GNN)是一种利用深度学习直接对图结构数据进行表征的框架,近年来受到人们越来越多的关注.然而传统的基于消息传递聚合的图神经网络(messaging passing GNN,MP-GNN)忽略了不同节点的平滑速度,无差别地... 图神经网络(graph neural network,GNN)是一种利用深度学习直接对图结构数据进行表征的框架,近年来受到人们越来越多的关注.然而传统的基于消息传递聚合的图神经网络(messaging passing GNN,MP-GNN)忽略了不同节点的平滑速度,无差别地聚合了邻居信息,易造成过平滑现象.为此,研究并提出一种线性结构熵的图核神经网络分类方法,即KENN.它首先利用图核方法对节点子图进行结构编码,判断子图之间的同构性,进而利用同构系数来定义不同邻居间的平滑系数.其次基于低复杂度的线性结构熵提取图的结构信息,加深和丰富图数据的结构表达能力.通过将线性结构熵、图核和图神经网络三者进行深度融合提出了图核神经网络分类方法.它不仅可以解决生物分子数据节点特征的稀疏问题,也可以解决社交网络数据以节点度作为特征所产生的信息冗余问题,同时还使得图神经网络能够自适应调整对图结构特征的表征能力,使其超越MP-GNN的上界(WL测试).最后,在7个公开的图分类数据集上实验验证了所提出模型的性能优于其他的基准模型. 展开更多
关键词 图分类 结构熵 图核 消息传递聚合 图神经网络
在线阅读 下载PDF
基于时空多图融合的交通流量预测 被引量:2
9
作者 顾焰杰 张英俊 +2 位作者 刘晓倩 周围 孙威 《计算机应用》 CSCD 北大核心 2024年第8期2618-2625,共8页
交通预测是智能交通系统(ITS)的核心任务,准确的交通流量预测(TFF)可以大幅提高公共资源的利用效率。针对现有多图神经网络模型对上下文信息使用不足、图融合方法不平衡和只考虑静态空间关系等问题,提出基于时空多图融合(STMGF)的TFF模... 交通预测是智能交通系统(ITS)的核心任务,准确的交通流量预测(TFF)可以大幅提高公共资源的利用效率。针对现有多图神经网络模型对上下文信息使用不足、图融合方法不平衡和只考虑静态空间关系等问题,提出基于时空多图融合(STMGF)的TFF模型。首先,通过融合空间图、语义图和空间语义图提取不同区域的不同空间相关性,并利用空间注意力机制和图注意力机制融合不同的图结构以动态学习不同邻居的重要性;然后,使用多核时间注意力机制同时捕获局部时间依赖性和全局时间依赖性;最后,使用多层感知机预测交通流量,得到最终预测值。在NYCTaxi和NYCBike数据集验证模型的有效性。实验结果表明,在NYCBike数据集的36步预测任务中,与时空图卷积神经网络(STGCN)、基于时空注意力的图神经网络(ASTGNN)、元图卷积递归网络(MegaCRN)相比,所提模型的均方根误差(RMSE)分别降低了8.46%、2.70%和2.20%。 展开更多
关键词 多图融合 多核注意力 空间注意力 图注意力 深度学习
在线阅读 下载PDF
基于图拉普拉斯正则化的PET图像核重建方法
10
作者 盛玉霞 孙坤 柴利 《电子学报》 EI CAS CSCD 北大核心 2024年第1期118-128,共11页
正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深... 正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深度图像先验的PET图像核重建方法 .设计了改进的U-net神经网络,将PET前向投影模型中的核系数表示为神经网络的输出;通过先验图像构建图拉普拉斯矩阵,重建问题被建模为基于神经网络的带图拉普拉斯正则化项的最大似然函数优化问题.利用优化转移方法导出了收敛的迭代重建算法,每一次迭代包括由核重建方法更新图像和利用神经网络更新核系数两个步骤.仿真和临床实验结果表明,本文提出的方法在不同的指标下都有更好的重建效果,优于已有核重建方法以及最新的基于深度系数先验的重建方法 . 展开更多
关键词 PET 图像重建 核方法 深度图像先验 图拉普拉斯正则化
在线阅读 下载PDF
面向全量测点耦合结构分析与估计的工业过程监测方法 被引量:1
11
作者 赵健程 赵春晖 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1517-1538,共22页
实际工业场景中,需要在生产过程中收集大量测点的数据,从而掌握生产过程运行状态.传统的过程监测方法通常仅评估运行状态整体的异常与否,或对运行状态进行分级评估,这种方式并不会直接定位故障部位,不利于故障的高效检修.为此,提出一种... 实际工业场景中,需要在生产过程中收集大量测点的数据,从而掌握生产过程运行状态.传统的过程监测方法通常仅评估运行状态整体的异常与否,或对运行状态进行分级评估,这种方式并不会直接定位故障部位,不利于故障的高效检修.为此,提出一种基于全量测点估计的监测模型,根据全量测点估计值与实际值的偏差定义监测指标,从而实现全量测点的分别精准监测.为克服原有的基于工况估计的监测方法监测不全面且对测点间耦合关系建模不充分的问题,提出多核图卷积网络(Multi-kernel graph convolutional network,MKGCN),通过将全量传感器测点视为一张全量测点图,显式地对测点间耦合关系进行建模,从而实现全量传感器测点的同步工况估计.此外,面向在线监测场景,设计基于特征逼近的自迭代方法,从而克服在异常情况下由于测点间强耦合导致的部分测点估计值异常的问题.所提出的方法在电厂百万千瓦超超临界机组中引风机的实际数据上进行验证,结果显示,与其他典型方法相比,所提出的监测方法能够更精准地检测出发生故障的测点. 展开更多
关键词 自迭代特征替换 多核图卷积网络 全量测点估计 故障检测
在线阅读 下载PDF
基于通道剪枝的轻量化空气质量检测方法 被引量:1
12
作者 崔雅博 窦小楠 +1 位作者 王昆 刘丽娜 《仪表技术与传感器》 CSCD 北大核心 2024年第4期90-94,121,共6页
针对传统空气质量检测系统结构复杂、部署困难以及成本较高的问题,利用图卷积网络对大气图像特征进行分析,提出了一种基于通道剪枝的轻量化空气质量检测算法。首先以ResNet50为基础网络训练一个PM 2.5指数检测网络,实现了空气质量初步... 针对传统空气质量检测系统结构复杂、部署困难以及成本较高的问题,利用图卷积网络对大气图像特征进行分析,提出了一种基于通道剪枝的轻量化空气质量检测算法。首先以ResNet50为基础网络训练一个PM 2.5指数检测网络,实现了空气质量初步的自动化检测。然后对网络模型中的所有卷积核通道和相关的参数传递进行图节点核权重边建模,以图表示形式输入GCN,并输出针对每个卷积核节点的剪枝重要性判别预测。最后根据GCN结果进行通道剪枝,使用原始数据集对剪枝后模型的参数进行微调,在保持网络检测精准度的情况下,实现网络模型的轻量化。通过对比实验和消融实验验证了提出的检测方法具有较高的检测精度,平均检测误差仅有5.31%,RMSE提升了0.52,R-square仅降低了0.018,解决了网络模型的参数量和计算量过大的问题,网络参数量从4.12×10^(7)降低至2.01×10^(7),FPS从16.78帧/s提升至30.9帧/s,为在便携式终端上实现空气质量检测任务提供了有力的技术支持。 展开更多
关键词 空气质量检测 大气图像 通道剪枝 卷积核通道 图卷积网络 网络轻量化
在线阅读 下载PDF
基于结构感知的多图学习方法
13
作者 付东来 高泽安 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2407-2417,共11页
多图学习是一种非常重要的学习范式.与多示例学习相比,在多图学习中包表示一个对象,包中的每一个图对应一个子对象.这种数据表示方法能够表达子对象的结构信息.但是,现有的多图学习方法不仅隐含假设包内的图满足独立同分布,而且多采用... 多图学习是一种非常重要的学习范式.与多示例学习相比,在多图学习中包表示一个对象,包中的每一个图对应一个子对象.这种数据表示方法能够表达子对象的结构信息.但是,现有的多图学习方法不仅隐含假设包内的图满足独立同分布,而且多采用将多图学习问题转变为多示例学习问题的技术思路.这类多图学习方法容易损失图自身及图间的结构信息.针对上述问题,本文提出一种基于结构感知的多图学习方法,有效学习图自身和图间的结构信息.该方法利用图核,通过计算图之间的相似度保留图自身的结构信息,通过生成包级图表达图间的结构信息,并且设计包编码器有效学习图间的结构信息.在NCI(1)、NCI(109)和AIDB三个多图数据集上的实验结果表明,所提方法相较于现有方法在准确率、精确率、F1值和AUC上分别平均提高了5.97%、3.44%、4.48%和2.56%,在召回率上平均降低了2.12%. 展开更多
关键词 多图学习 图核 结构信息 包结构图 独立同分布
在线阅读 下载PDF
图核函数研究现状与进展 被引量:6
14
作者 白璐 徐立祥 +3 位作者 崔丽欣 焦宇航 吴宇帆 潘云逸 《安徽大学学报(自然科学版)》 CAS 北大核心 2017年第1期21-28,共8页
核方法具有坚实的理论基础和广泛的应用,已引起了各领域的关注.基于核的机器学习方法不仅适用于以特征向量表示的模式,也适用于结构化数据的模式.前者对应的是向量核方法,后者对应的是图核方法.图核对结构化数据具有强大而灵活的表示形... 核方法具有坚实的理论基础和广泛的应用,已引起了各领域的关注.基于核的机器学习方法不仅适用于以特征向量表示的模式,也适用于结构化数据的模式.前者对应的是向量核方法,后者对应的是图核方法.图核对结构化数据具有强大而灵活的表示形式,其不仅能描述研究对象或模式的特性,还能反映构成这个物体不同部分之间的结构信息.目前,基于图核的机器学习方法在模式识别、机器学习、机器视觉、数据挖掘等相关研究领域得到了极为广泛的关注与应用,已成为结构数据描述方法和应用领域的一个重要研究方向.论文从使用最为广泛的基于R-convolution的图核谈起,总结了图核研究的意义,着重回顾和讨论图核函数的基本理论、基本分类、国内外研究现状,并进一步指出图核研究的发展方向. 展开更多
关键词 结构化 图核 机器学习
在线阅读 下载PDF
基于核图割模型的肝脏CT图像肿瘤分割 被引量:4
15
作者 杨柳 陈永林 +2 位作者 王翊 谭立文 陈伟 《计算机工程》 CAS CSCD 2014年第3期238-243,共6页
计算机断层成像(CT)对疾病的确诊意义重大,在医学图像的自动检测中应用较多的模型为图割模型,但传统图割算法严重依赖于对复杂区域进行大量建立的模型,运算复杂且不利推广。为此,在传统图割理论基础上引入核函数,提出一种基于核图割模... 计算机断层成像(CT)对疾病的确诊意义重大,在医学图像的自动检测中应用较多的模型为图割模型,但传统图割算法严重依赖于对复杂区域进行大量建立的模型,运算复杂且不利推广。为此,在传统图割理论基础上引入核函数,提出一种基于核图割模型的肝脏CT图像肿瘤分割算法。通过核函数将原始数据映射到高维空间,并在高维图像数据空间用图割理论对CT图像的肝区与肿瘤区域进行分割,以提取疑似肿瘤区域,解决传统图割模型中需要依赖人机交互和对复杂区域建模困难等问题。由Mercer定理得出,核空间的点积运算不需要显式指定图像各区域的具体模型,进行核推广后克服了传统模型通用性不强的弱点。利用临床CT图像数据对该算法进行分割实验,结果表明,基于核推广后的图割算法能够有效对肿瘤和肝区进行分离,可应用于临床实际中作为肿瘤辅助诊断手段。 展开更多
关键词 图割 核图割 肿瘤分割 肝脏分割 医学图像分割
在线阅读 下载PDF
面向脑网络的新型图核及其在MCI分类上的应用 被引量:10
16
作者 接标 张道强 《计算机学报》 EI CSCD 北大核心 2016年第8期1667-1680,共14页
作为一种图的相似性度量,图核已经被提出用于计算脑网络的相似性,并用于分类一些脑疾病,如阿尔茨海默病(Alzheimer’s Disease,AD)以及它的早期阶段,即轻度认知功能障碍(Mild Cognitive Impairment,MCI).然而,已有图核主要面向一般图而... 作为一种图的相似性度量,图核已经被提出用于计算脑网络的相似性,并用于分类一些脑疾病,如阿尔茨海默病(Alzheimer’s Disease,AD)以及它的早期阶段,即轻度认知功能障碍(Mild Cognitive Impairment,MCI).然而,已有图核主要面向一般图而构建,从而忽略了脑网络自身特有的特性,如节点的唯一性(即每个节点对应着唯一的脑区),这可能影响到脑网络分析(分类)性能.为了解决这个问题,构建一种面向脑网络的图核,用于测量一对脑网络的相似性.具体而言就是:首先,以网络中每一个节点为中心,构建一组子网络来反映网络的局部多层次拓扑特性.而后,利用节点的唯一性,构建测量每对子网组之间相似性函数,从而获得用于测量一对脑网络的相似性的图核.不同于已有的图核,提出的图核充分考虑到脑网络自身特有的特性,以及保留了脑网络局部连接特性.在两个真实的MCI数据集上,实验结果表明,相对于现阶段的图核,文中提出的图核能够显著提高分类的性能. 展开更多
关键词 阿尔茨海默病 轻度认知功能障碍 脑网络分析 图核 分类
在线阅读 下载PDF
基于优先图的本体相似度计算 被引量:5
17
作者 兰美辉 徐坚 高炜 《科学技术与工程》 北大核心 2014年第28期252-255,共4页
本体概念的相似度计算是信息检索的重要研究课题。通过优先图的构造和核函数方法得到关于排序代价函数的正则平方最小框架,利用表示理论得到模型的解,从而将原本体图映射到实直线,原本体图中每个顶点映射到对应实数。原本体图中概念之... 本体概念的相似度计算是信息检索的重要研究课题。通过优先图的构造和核函数方法得到关于排序代价函数的正则平方最小框架,利用表示理论得到模型的解,从而将原本体图映射到实直线,原本体图中每个顶点映射到对应实数。原本体图中概念之间的相似度通过它们对应实数间的差值来判定。将该算法分别应用于计算机和生物本体,实验数据表明新算法有较高的P@N命中率。 展开更多
关键词 本体 相似度计算 排序 优先图 核方法
在线阅读 下载PDF
用于图分类的组合维核方法 被引量:7
18
作者 李宇峰 郭天佑 周志华 《计算机学报》 EI CSCD 北大核心 2009年第5期946-952,共7页
对图等内含结构信息的数据进行学习,是机器学习领域的一个重要问题.核方法是解决此类问题的一种有效技术.文中针对分子图分类问题,基于Swamidass等人的工作,提出用于图分类的组合维核方法.该方法首先构建融合一维信息的二维核来刻画分... 对图等内含结构信息的数据进行学习,是机器学习领域的一个重要问题.核方法是解决此类问题的一种有效技术.文中针对分子图分类问题,基于Swamidass等人的工作,提出用于图分类的组合维核方法.该方法首先构建融合一维信息的二维核来刻画分子化学特征,然后基于分子力学的相关知识,利用几何信息构建三维核来刻画分子物理性质.在此基础上对不同维度的核进行集成,通过求解二次约束二次规划问题来获得最优核组合.实验结果表明,文中方法比现有技术具有更好的性能. 展开更多
关键词 机器学习 图分类 核方法 结构信息 集成学习
在线阅读 下载PDF
基于核化图嵌入的最佳鉴别分析与人脸识别 被引量:27
19
作者 卢桂馥 林忠 金忠 《软件学报》 EI CSCD 北大核心 2011年第7期1561-1570,共10页
将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE... 将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE)框架内的线性降维算法,并且基于所给出的理论框架提出了一种综合利用零空间和非零空间鉴别信息的组合方法.任何一种可以用核化图嵌入框架描述的核算法,都可以有相应的组合方法.在ORL,Yale,FERET和PIE人脸数据库上验证了所提出的理论和方法的有效性. 展开更多
关键词 核化图嵌入 最优鉴别矢量 核主成分分析 特征抽取 人脸识别
在线阅读 下载PDF
面向标注的局部中心度传播聚类算法 被引量:1
20
作者 宗瑜 金萍 +1 位作者 徐贯东 郭有强 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第4期499-504,共6页
现有的标注聚类算法大多采用传统的K-means或Single-linkage算法对标注数据直接聚类,但是K-means或Sin-gle-linkage本身固有的缺陷严重影响了聚类结果的质量.给出了一种局部中心度传播聚类算法LCIPC(local centrality in-formation pass... 现有的标注聚类算法大多采用传统的K-means或Single-linkage算法对标注数据直接聚类,但是K-means或Sin-gle-linkage本身固有的缺陷严重影响了聚类结果的质量.给出了一种局部中心度传播聚类算法LCIPC(local centrality in-formation passing clustering),该算法首先在标注相似度的基础上建立标注数据的KNN有向邻居图G;然后利用核密度估计方法计算每个标注的局部中心度;再通过随机游走方法在图G中传播局部中心度,以产生全局中心度等级;最后,调用图深度优先搜索算法发现标注聚类结果.在3个真实数据集上的聚类结果显示,LCIPC算法具有够获得高质量标注聚类结果的能力. 展开更多
关键词 标注 聚类 KNN 有向图 核密度 局部中心
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部