As an emerging field of study, granular computing has received much attention. Many models, frameworks, methods and techniques have been proposed and studied. It is perhaps the time to seek for a general and unified v...As an emerging field of study, granular computing has received much attention. Many models, frameworks, methods and techniques have been proposed and studied. It is perhaps the time to seek for a general and unified view so that fundamental issues can be examined and clarified.This paper examines granular computing from three perspectives.By viewing granular computing as a way of structured thinking,we focus on its philosophical foundations in modeling human perception of the reality.By viewing granular computing as a method of structured problem solving,we examine its theoretical and methodological foundations in solving a wide range of real-world problems.By viewing granular computing as a paradigm of information processing,we turn our attention to its more concrete techniques. The three perspectives together offer a holistic view of granular computing.展开更多
Solving complex problems by multi-agent systems in distributed environments requires new approximate reasoning methods based on new computing paradigms. One such recently emerging computing paradigm is Granular Comput...Solving complex problems by multi-agent systems in distributed environments requires new approximate reasoning methods based on new computing paradigms. One such recently emerging computing paradigm is Granular Computing(GC). We discuss the Rough-Granular Computing(RGC) approach to modeling of computations in complex adaptive systems and multiagent systems as well as for approximate reasoning about the behavior of such systems. The RGC methods have been successfully applied for solving complex problems in areas such as identification of objects or behavioral patterns by autonomous systems, web mining, and sensor fusion.展开更多
Granular Computing on partitions(RST),coverings(GrCC) and neighborhood systems(LNS) are examined: (1) The order of generality is RST, GrCC, and then LNS. (2) The quotient structure: In RST, it is called quotient set. ...Granular Computing on partitions(RST),coverings(GrCC) and neighborhood systems(LNS) are examined: (1) The order of generality is RST, GrCC, and then LNS. (2) The quotient structure: In RST, it is called quotient set. In GrCC, it is a simplical complex, called the nerve of the covering in combinatorial topology. For LNS, the structure has no known description. (3) The approximation space of RST is a topological space generated by a partition, called a clopen space. For LNS, it is a generalized/pretopological space which is more general than topological space. For GrCC,there are two possibilities. One is a special case of LNS,which is the topological space generated by the covering. There is another topological space, the topology generated by the finite intersections of the members of a covering The first one treats covering as a base, the second one as a subbase. (4) Knowledge representations in RST are symbol-valued systems. In GrCC, they are expression-valued systems. In LNS, they are multivalued system; reported in 1998 . (5) RST and GRCC representation theories are complete in the sense that granular models can be recaptured fully from the knowledge representations.展开更多
This paper reviews a class of important models of granular computing which are induced by equivalence relations,or by general binary relations,or by neighborhood systems,and propose a class of models of granular compu...This paper reviews a class of important models of granular computing which are induced by equivalence relations,or by general binary relations,or by neighborhood systems,and propose a class of models of granular computing which are induced by coverings of the given universe.展开更多
Rough set theory is a technique of granular computing. In this paper, we study a type of generalized rough sets based on covering. There are several literatures[1,40-43] exploring covering-based rough sets. Our focus ...Rough set theory is a technique of granular computing. In this paper, we study a type of generalized rough sets based on covering. There are several literatures[1,40-43] exploring covering-based rough sets. Our focus of this paper is on the dualities in rough operations.展开更多
文摘As an emerging field of study, granular computing has received much attention. Many models, frameworks, methods and techniques have been proposed and studied. It is perhaps the time to seek for a general and unified view so that fundamental issues can be examined and clarified.This paper examines granular computing from three perspectives.By viewing granular computing as a way of structured thinking,we focus on its philosophical foundations in modeling human perception of the reality.By viewing granular computing as a method of structured problem solving,we examine its theoretical and methodological foundations in solving a wide range of real-world problems.By viewing granular computing as a paradigm of information processing,we turn our attention to its more concrete techniques. The three perspectives together offer a holistic view of granular computing.
基金The grant3 T11C 00226 from Min istroyf ScientifiRcesearchand InformationTechnologyoftheRepublicofPoland.
文摘Solving complex problems by multi-agent systems in distributed environments requires new approximate reasoning methods based on new computing paradigms. One such recently emerging computing paradigm is Granular Computing(GC). We discuss the Rough-Granular Computing(RGC) approach to modeling of computations in complex adaptive systems and multiagent systems as well as for approximate reasoning about the behavior of such systems. The RGC methods have been successfully applied for solving complex problems in areas such as identification of objects or behavioral patterns by autonomous systems, web mining, and sensor fusion.
文摘Granular Computing on partitions(RST),coverings(GrCC) and neighborhood systems(LNS) are examined: (1) The order of generality is RST, GrCC, and then LNS. (2) The quotient structure: In RST, it is called quotient set. In GrCC, it is a simplical complex, called the nerve of the covering in combinatorial topology. For LNS, the structure has no known description. (3) The approximation space of RST is a topological space generated by a partition, called a clopen space. For LNS, it is a generalized/pretopological space which is more general than topological space. For GrCC,there are two possibilities. One is a special case of LNS,which is the topological space generated by the covering. There is another topological space, the topology generated by the finite intersections of the members of a covering The first one treats covering as a base, the second one as a subbase. (4) Knowledge representations in RST are symbol-valued systems. In GrCC, they are expression-valued systems. In LNS, they are multivalued system; reported in 1998 . (5) RST and GRCC representation theories are complete in the sense that granular models can be recaptured fully from the knowledge representations.
文摘This paper reviews a class of important models of granular computing which are induced by equivalence relations,or by general binary relations,or by neighborhood systems,and propose a class of models of granular computing which are induced by coverings of the given universe.
文摘Rough set theory is a technique of granular computing. In this paper, we study a type of generalized rough sets based on covering. There are several literatures[1,40-43] exploring covering-based rough sets. Our focus of this paper is on the dualities in rough operations.