The first 2^(+)excited states of the nucleus directly reflect the interaction between the shell structure and the nucleus,providing insights into the validity of the shell model and nuclear structure characteristics.A...The first 2^(+)excited states of the nucleus directly reflect the interaction between the shell structure and the nucleus,providing insights into the validity of the shell model and nuclear structure characteristics.Although the features of the first 2^(+)excited states can be measured for stable nuclei and calculated using nuclear models,significant uncertainty remains.This study employs a machine learning model based on a light gradient boosting machine(LightGBM)to investigate the first 2^(+)excited states.Specifically,the training of the LightGBM algorithm and the prediction of the first 2^(+)properties of 642 nuclei are presented.Furthermore,detailed comparisons of the LightGBM predictions were performed with available experimental data,shell model calculations,and Bayesian neural network predictions.The results revealed that the average difference between the LightGBM predictions and the experimental data was 18 times smaller than that obtained by the shell model and only 70%of the BNN prediction results.Considering Mg,Ca,Kr,Sm,and Pb isotopes as examples,it was also observed that LightGBM can effectively reproduce the magic number mutation caused by shell effects,with the energy being as low as 0.04 MeV due to shape coexistence.Therefore,we believe that leveraging LightGBM-based machine learning can profoundly enhance our insights into nuclear structures and provide new avenues for nuclear physics research.展开更多
Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles.Electrochemical impedance spectroscopy(EIS)offers valuable insight...Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles.Electrochemical impedance spectroscopy(EIS)offers valuable insights into battery degradation analysis and modeling.However,previous studies have not adequately addressed the impedance uncertainties,particularly during battery operating conditions,which can substantially impact the robustness and accuracy of state of health(SOH)estimation.Motivated by this,this paper proposes a comprehensive feature optimization scheme that integrates impedance validity assessment with correlation analysis.By utilizing metrics such as impedance residuals and correlation coefficients,the proposed method effectively filters out invalid and insignificant impedance data,thereby enhancing the reliability of the input features.Subsequently,the extreme gradient boosting(XGBoost)modeling framework is constructed for estimating the battery degradation trajectories.The XGBoost model incorporates a diverse range of hyperparameters,optimized by a genetic algorithm to improve its adaptability and generalization performance.Experimental validation confirms the effectiveness of the proposed feature optimization scheme,demonstrating the superior estimation performance of the proposed method in comparison with four baseline techniques.展开更多
The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the...The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the major constituents of oil, thus the focus of this work lies in investigating the solubility of CO_(2) in hydrocarbons. However, current experimental measurements are time-consuming, and equations of state can be computationally complex. To address these challenges, we developed an artificial intelligence-based model to predict the solubility of CO_(2) in hydrocarbons under varying conditions of temperature, pressure, molecular weight, and density. Using experimental data from previous studies,we trained and predicted the solubility using four machine learning models: support vector regression(SVR), extreme gradient boosting(XGBoost), random forest(RF), and multilayer perceptron(MLP).Among four models, the XGBoost model has the best predictive performance, with an R^(2) of 0.9838.Additionally, sensitivity analysis and evaluation of the relative impacts of each input parameter indicate that the prediction of CO_(2) solubility in hydrocarbons is most sensitive to pressure. Furthermore, our trained model was compared with existing models, demonstrating higher accuracy and applicability of our model. The developed machine learning-based model provides a more efficient and accurate approach for predicting CO_(2) solubility in hydrocarbons, which may contribute to the advancement of CO_(2)-related applications in the petroleum industry.展开更多
This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient a...This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient and accurate rock trace identification.A thirteen-dimensional database consisting of basic,vector,and discontinuity features is established from image samples.All data points are classified as either‘‘trace”or‘‘non-trace”to divide the ultimate results into candidate trace samples.It is found that the SMOTE technology can effectively improve classification performance by recommending an optimized imbalance ratio of 1:5 to 1:4.Then,sixteen classifiers generated from four basic machine learning(ML)models are applied for performance comparison.The results reveal that the proposed RS-SMOTE-GBT classifier outperforms the other fifteen hybrid ML algorithms for both trace and nontrace classifications.Finally,discussions on feature importance,generalization ability and classification error are conducted for the proposed classifier.The experimental results indicate that more critical features affecting the trace classification are primarily from the discontinuity features.Besides,cleaning up the sedimentary pumice and reducing the area of fractured rock contribute to improving the overall classification performance.The proposed method provides a new alternative approach for the identification of 3D rock trace.展开更多
Accurate estimates of forest aboveground biomass(AGB)are critical for supporting strategies of ecosystem conservation and climate change mitigation.The Jiuzhaigou National Nature Reserve,located in Eastern Tibet Plate...Accurate estimates of forest aboveground biomass(AGB)are critical for supporting strategies of ecosystem conservation and climate change mitigation.The Jiuzhaigou National Nature Reserve,located in Eastern Tibet Plateau,has rich forest resources on steep slopes and is very sensitive to climate change but plays an important role in the regulation of regional carbon cycles.However,an estimation of AGB of subalpine forests in the Nature Reserve has not been carried out and whether a global biomass model is available has not been determined.To provide this information,Landsat 8 OLI and Sentinel-2B data were combined to estimate subalpine forest AGB using linear regression,and two machine learning approaches–random forest and extreme gradient boosting,with 54 inventory plots.Regardless of forest type,Observed AGB of the Reserve varied from 61.7 to 475.1 Mg hawith an average of 180.6 Mg ha.Results indicate that integrating the Landsat 8 OLI and Sentinel-2B imagery significantly improved model efficiency regardless of modelling approaches.The results highlight a potential way to improve the prediction of forest AGB in mountainous regions.Modelled AGB indicated a strong spatial variability.However,the modelled biomass varied greatly with global biomass products,indicating that global biomass products should be evaluated in regional AGB estimates and more field observations are required,particularly for areas with complex terrain to improve model accuracy.展开更多
Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential stra...Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential strategy is to design anchoring materials(AMs)to appropriately adsorb Li-S species.Herein,we propose a new three-procedure protocol,named InfoAd(Informative Adsorption)to evaluate the anchoring of Li_(2)S on two-dimensional(2D)materials and disclose the underlying importance of material features by combining high-throughput calculation workflow and machine learning(ML).In this paradigm,we calculate the anchoring of Li_(2)S on 12552D A_(x)B_(y)(B in the VIA/VIIA group)materials and pick out 44(un)reported nontoxic 2D binary A_(x)B_(y)AMs,in which the importance of the geometric features on the anchoring effect is revealed by ML for the first time.We develop a new Infograph model for crystals to accurately predict whether a material has a moderate binding with Li_(2)S and extend it to all 2D materials.Our InfoAd protocol elucidates the underlying structure-property relationship of Li_(2)S adsorption on 2D materials and provides a general research framework of adsorption-related materials for catalysis and energy/substance storage.展开更多
In the loose and fractured coal seam with particularly low uniaxial compressive strength(UCS),driving a roadway is extremely difficult as roof falling and wall spalling occur frequently.To address this issue,the jet g...In the loose and fractured coal seam with particularly low uniaxial compressive strength(UCS),driving a roadway is extremely difficult as roof falling and wall spalling occur frequently.To address this issue,the jet grouting(JG)technique(high-pressure grout mixed with coal particles)was first introduced in this study to improve the self-supporting ability of coal mass.To evaluate the strength of the jet-grouted coal-grout composite(JG composite),the UCS evolution patterns were analyzed by preparing 405 specimens combining the influential variables of grout types,curing time,and coal to grout(C/G)ratio.Furthermore,the relationships between UCS and these influencing variables were modeled using ensemble learning methods i.e.gradient boosted regression tree(GBRT)and random forest(RF)with their hyperparameters tuned by the particle swarm optimization(PSO).The results showed that the chemical grout composite has higher short-term strength,while the cement grout composite can achieve more stable strength in the long term.The PSO-GBRT and PSO-RF models can both achieve high prediction accuracy.Also,the variable importance analysis demonstrated that the grout type and curing time should be considered carefully.This study provides a robust intelligent model for predicting UCS of JG composites,which boosts JG design in the field.展开更多
基金supported by the National Key R&D Program of China (No. 2022YFA1603300)the Romanian Ministry of Research,Innovation and Digitalization under Contract PN 23.21.01.06+1 种基金The ELI-RO project with Contract ELI-RORDI-2024-008 (AMAP)a grant from the Romanian Ministry of Research,Innovation and Digitization,CNCS-UEFIS-CDI,with project numbers PN-Ⅲ-P4-PCE-2021-1014, PN-Ⅲ-P4-PCE-2021-0595, and PN-Ⅲ-P1-1.1-TE2021-1464 within PNCDI Ⅲ
文摘The first 2^(+)excited states of the nucleus directly reflect the interaction between the shell structure and the nucleus,providing insights into the validity of the shell model and nuclear structure characteristics.Although the features of the first 2^(+)excited states can be measured for stable nuclei and calculated using nuclear models,significant uncertainty remains.This study employs a machine learning model based on a light gradient boosting machine(LightGBM)to investigate the first 2^(+)excited states.Specifically,the training of the LightGBM algorithm and the prediction of the first 2^(+)properties of 642 nuclei are presented.Furthermore,detailed comparisons of the LightGBM predictions were performed with available experimental data,shell model calculations,and Bayesian neural network predictions.The results revealed that the average difference between the LightGBM predictions and the experimental data was 18 times smaller than that obtained by the shell model and only 70%of the BNN prediction results.Considering Mg,Ca,Kr,Sm,and Pb isotopes as examples,it was also observed that LightGBM can effectively reproduce the magic number mutation caused by shell effects,with the energy being as low as 0.04 MeV due to shape coexistence.Therefore,we believe that leveraging LightGBM-based machine learning can profoundly enhance our insights into nuclear structures and provide new avenues for nuclear physics research.
文摘Battery health evaluation and management are vital for the long-term reliability and optimal performance of lithium-ion batteries in electric vehicles.Electrochemical impedance spectroscopy(EIS)offers valuable insights into battery degradation analysis and modeling.However,previous studies have not adequately addressed the impedance uncertainties,particularly during battery operating conditions,which can substantially impact the robustness and accuracy of state of health(SOH)estimation.Motivated by this,this paper proposes a comprehensive feature optimization scheme that integrates impedance validity assessment with correlation analysis.By utilizing metrics such as impedance residuals and correlation coefficients,the proposed method effectively filters out invalid and insignificant impedance data,thereby enhancing the reliability of the input features.Subsequently,the extreme gradient boosting(XGBoost)modeling framework is constructed for estimating the battery degradation trajectories.The XGBoost model incorporates a diverse range of hyperparameters,optimized by a genetic algorithm to improve its adaptability and generalization performance.Experimental validation confirms the effectiveness of the proposed feature optimization scheme,demonstrating the superior estimation performance of the proposed method in comparison with four baseline techniques.
基金supported by the Fundamental Research Funds for the National Major Science and Technology Projects of China (No. 2017ZX05009-005)。
文摘The application of carbon dioxide(CO_(2)) in enhanced oil recovery(EOR) has increased significantly, in which CO_(2) solubility in oil is a key parameter in predicting CO_(2) flooding performance. Hydrocarbons are the major constituents of oil, thus the focus of this work lies in investigating the solubility of CO_(2) in hydrocarbons. However, current experimental measurements are time-consuming, and equations of state can be computationally complex. To address these challenges, we developed an artificial intelligence-based model to predict the solubility of CO_(2) in hydrocarbons under varying conditions of temperature, pressure, molecular weight, and density. Using experimental data from previous studies,we trained and predicted the solubility using four machine learning models: support vector regression(SVR), extreme gradient boosting(XGBoost), random forest(RF), and multilayer perceptron(MLP).Among four models, the XGBoost model has the best predictive performance, with an R^(2) of 0.9838.Additionally, sensitivity analysis and evaluation of the relative impacts of each input parameter indicate that the prediction of CO_(2) solubility in hydrocarbons is most sensitive to pressure. Furthermore, our trained model was compared with existing models, demonstrating higher accuracy and applicability of our model. The developed machine learning-based model provides a more efficient and accurate approach for predicting CO_(2) solubility in hydrocarbons, which may contribute to the advancement of CO_(2)-related applications in the petroleum industry.
基金supported by Key innovation team program of innovation talents promotion plan by MOST of China(No.2016RA4059)Natural Science Foundation Committee Program of China(No.51778474)Science and Technology Project of Yunnan Provincial Transportation Department(No.25 of 2018)。
文摘This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient and accurate rock trace identification.A thirteen-dimensional database consisting of basic,vector,and discontinuity features is established from image samples.All data points are classified as either‘‘trace”or‘‘non-trace”to divide the ultimate results into candidate trace samples.It is found that the SMOTE technology can effectively improve classification performance by recommending an optimized imbalance ratio of 1:5 to 1:4.Then,sixteen classifiers generated from four basic machine learning(ML)models are applied for performance comparison.The results reveal that the proposed RS-SMOTE-GBT classifier outperforms the other fifteen hybrid ML algorithms for both trace and nontrace classifications.Finally,discussions on feature importance,generalization ability and classification error are conducted for the proposed classifier.The experimental results indicate that more critical features affecting the trace classification are primarily from the discontinuity features.Besides,cleaning up the sedimentary pumice and reducing the area of fractured rock contribute to improving the overall classification performance.The proposed method provides a new alternative approach for the identification of 3D rock trace.
基金supported financially by the Specialized Fund for the Post-Disaster Reconstruction and Heritage Protec-tion in Sichuan Province(5132202019000128)the Everest Scientific Research Program of Chengdu University of Technology(80000-2021ZF11410)+3 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,2019QZKK0307)the State Key Laborato-ry of Geohazard Prevention and Geoenvironment Protection Independent Research Project(SKLGP2018Z004)the key technologies of Mountain rail transit green construction in ecologically sensitive region based on Mountain rail transit from Dujiangyan to Mt.Siguniang anti-poverty project(2018-zl-08)Study on risk identification and countermeasures of Sichuan-Tibet Railway Major Projects(2019YFG0460)。
文摘Accurate estimates of forest aboveground biomass(AGB)are critical for supporting strategies of ecosystem conservation and climate change mitigation.The Jiuzhaigou National Nature Reserve,located in Eastern Tibet Plateau,has rich forest resources on steep slopes and is very sensitive to climate change but plays an important role in the regulation of regional carbon cycles.However,an estimation of AGB of subalpine forests in the Nature Reserve has not been carried out and whether a global biomass model is available has not been determined.To provide this information,Landsat 8 OLI and Sentinel-2B data were combined to estimate subalpine forest AGB using linear regression,and two machine learning approaches–random forest and extreme gradient boosting,with 54 inventory plots.Regardless of forest type,Observed AGB of the Reserve varied from 61.7 to 475.1 Mg hawith an average of 180.6 Mg ha.Results indicate that integrating the Landsat 8 OLI and Sentinel-2B imagery significantly improved model efficiency regardless of modelling approaches.The results highlight a potential way to improve the prediction of forest AGB in mountainous regions.Modelled AGB indicated a strong spatial variability.However,the modelled biomass varied greatly with global biomass products,indicating that global biomass products should be evaluated in regional AGB estimates and more field observations are required,particularly for areas with complex terrain to improve model accuracy.
基金supported by National key research and development program of China(2022YFA1503101)National Natural Science Foundation of China(22173067,22203058)+4 种基金Science and Technology Project of Jiangsu Province(BK20200873,BZ2020011)the Science and Technology Development Fund,Macao SAR(0052/2021/A)Collaborative Innovation Center of Suzhou Nano Science&Technology,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices。
文摘Lithium-sulfur(Li-S)batteries are notable for their high theoretical energy density,but the‘shuttle effect’and the limited conversion kinetics of Li-S species can downgrade their actual performance.An essential strategy is to design anchoring materials(AMs)to appropriately adsorb Li-S species.Herein,we propose a new three-procedure protocol,named InfoAd(Informative Adsorption)to evaluate the anchoring of Li_(2)S on two-dimensional(2D)materials and disclose the underlying importance of material features by combining high-throughput calculation workflow and machine learning(ML).In this paradigm,we calculate the anchoring of Li_(2)S on 12552D A_(x)B_(y)(B in the VIA/VIIA group)materials and pick out 44(un)reported nontoxic 2D binary A_(x)B_(y)AMs,in which the importance of the geometric features on the anchoring effect is revealed by ML for the first time.We develop a new Infograph model for crystals to accurately predict whether a material has a moderate binding with Li_(2)S and extend it to all 2D materials.Our InfoAd protocol elucidates the underlying structure-property relationship of Li_(2)S adsorption on 2D materials and provides a general research framework of adsorption-related materials for catalysis and energy/substance storage.
基金financially supported by the Fundamental Research Funds for the Central Universities(2020ZDPY0221)。
文摘In the loose and fractured coal seam with particularly low uniaxial compressive strength(UCS),driving a roadway is extremely difficult as roof falling and wall spalling occur frequently.To address this issue,the jet grouting(JG)technique(high-pressure grout mixed with coal particles)was first introduced in this study to improve the self-supporting ability of coal mass.To evaluate the strength of the jet-grouted coal-grout composite(JG composite),the UCS evolution patterns were analyzed by preparing 405 specimens combining the influential variables of grout types,curing time,and coal to grout(C/G)ratio.Furthermore,the relationships between UCS and these influencing variables were modeled using ensemble learning methods i.e.gradient boosted regression tree(GBRT)and random forest(RF)with their hyperparameters tuned by the particle swarm optimization(PSO).The results showed that the chemical grout composite has higher short-term strength,while the cement grout composite can achieve more stable strength in the long term.The PSO-GBRT and PSO-RF models can both achieve high prediction accuracy.Also,the variable importance analysis demonstrated that the grout type and curing time should be considered carefully.This study provides a robust intelligent model for predicting UCS of JG composites,which boosts JG design in the field.