Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional p...Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.展开更多
Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributio...Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.展开更多
针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-fr...针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。展开更多
基金supported by the National Natural Science Foundation of China (606720846060203760736006)
文摘Traditionally,beamforming using fractional Fourier transform(FrFT) involves a trial-and-error based FrFT order selection which is impractical.A new numerical order selection scheme is presented based on fractional power spectra(FrFT moment) of the linear chirp signal.This method can adaptively determine the optimum FrFT order by maximizing the second-order central FrFT moment.This makes the desired chirp signal substantially concentrated whereas the noise is rejected considerably.This improves the mean square error minimization beamformer by reducing effectively the signal-noise cross terms due to the finite data length de-correlation operation.Simulation results show that the new method works well under a wide range of signal to noise ratio and signal to interference ratio.
基金This work was supported by the National Natural Science Foundation of China(91538201)the Taishan Scholar Project of Shandong Province(ts201511020)the project supported by Chinese National Key Laboratory of Science and Technology on Information System Security(6142111190404).
文摘Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.
文摘针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。