A new nanocomposite material for construction of glucose biosensor was prepared. The biosensor was formed by entrapping glucose oxidase(Gox) into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite fil...A new nanocomposite material for construction of glucose biosensor was prepared. The biosensor was formed by entrapping glucose oxidase(Gox) into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film. In this biosensing thin film, the multiwalled carbon nanotubes can effectively catalyze hydrogen peroxide and nanoporous ZrO2 can enhance the stability of the immobilized enzyme. The resulting biosensor provides a very effective matrix for the immobilization of glucose oxidase and exhibits a wide linear response range from 8 μmol/L to 3 mmol/L with a correlation coefficient of 0.994 for the detection of glucose. And the response time and detection limit of the biosensor are determined to be 6 s and 3.5 μmol/L, respectively. Another attractive characteristic is that the biosensor is inexpensive, stable and reliable.展开更多
A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and ...A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement, respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17μA/cm2 and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition ofpH 5.5, 0.8 V and 65℃.展开更多
A transgenic strain of Trichoderma atroviride that expresses the Aspergillus niger glucose oxidase gene goxA under a homologous pathogen-inducible promoter (nag1) has been constructed, with the aim of increasing the a...A transgenic strain of Trichoderma atroviride that expresses the Aspergillus niger glucose oxidase gene goxA under a homologous pathogen-inducible promoter (nag1) has been constructed, with the aim of increasing the ability of this biocontrol agent (BCA) to attack phytopathogenic fungi and enhance plant systemic disease resistance. The sporulation and growth rate of the transgenic progenies were similar to the wild-type strain P1. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted extracellularly. The transformed strain SJ3 4, containing 12-14 copies of the transgene, produced significantly less N-acetyl-glucosaminidase and endochitinase then wild type. However, the ability of its culture filtrate to inhibit the germination of Botrytis cinerea spores was increased by about 3-fold. In comparison to P1, the transgenic strain more quickly overgrew and lysed in vitro the pathogens Rhizoctonia solani and Pythium ultimum. In assays in vivo SJ3 4 showed a highly improved biocontrol ability in soil heavily infested with those pathogens, where the wild type was unable to protect the plant and allow seeds to germinate. The Trichoderma-gox was able to induce a much higher level of systemic resistance against the foliar pathogen B. cinerea, as compared to the parent strain. This work demonstrate that i) heterologous genes driven by pathogen-inducible promoters can improve the biocontrol and Induced Systemic Resistance properties of fungal BCAs such as Trichoderma spp., and ii) these microbes can be used as vectors to provide the plant with useful molecules able, for instance, to increase pathogen展开更多
基金Project (20060532006) supported by Specialized Research Fund for the Doctoral Program of Higher Education
文摘A new nanocomposite material for construction of glucose biosensor was prepared. The biosensor was formed by entrapping glucose oxidase(Gox) into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film. In this biosensing thin film, the multiwalled carbon nanotubes can effectively catalyze hydrogen peroxide and nanoporous ZrO2 can enhance the stability of the immobilized enzyme. The resulting biosensor provides a very effective matrix for the immobilization of glucose oxidase and exhibits a wide linear response range from 8 μmol/L to 3 mmol/L with a correlation coefficient of 0.994 for the detection of glucose. And the response time and detection limit of the biosensor are determined to be 6 s and 3.5 μmol/L, respectively. Another attractive characteristic is that the biosensor is inexpensive, stable and reliable.
基金Projects(50473022, 20673036) supported by the National Natural Science Foundation of China project(2005) supported by the State Key Laboratory of Chemo/Biosensing and Chemometrics of China+1 种基金 project(2006FJ4100) supported by the Science Technology Project of Hunan Province project(2006) supported by the Postdoctor Foundation of Hunan University
文摘A novel polyaniline-graphite composite film glucose oxidase (PGCF GOD) electrode was developed. The PGCF was synthesized by cyclic voitammetry method in 0.5 mol/L H2SO4 solution containing 1 g/L graphite powder and 0.2 mol/L aniline. The PGCF GOD electrode was prepared by doping GOD into the composite film. The morphology of the PGCF and the response property of the PGCF GOD electrode were investigated by scanning electron microscopy and electrochemical measurement, respectively. The results show that the PGCF has a porous and netty structure and the PGCF GOD electrode has excellent response property such as high sensitivity and short response time. Influences of pH value, temperature, glucose concentration and potential on the response current of the electrode were also discussed. The sensor has a maximum steady-state current density of 357.17μA/cm2 and an apparent Michaelis-Menten constant of 16.57 mmol/L. The maximum current response of the enzyme electrode occurs under the condition ofpH 5.5, 0.8 V and 65℃.
文摘A transgenic strain of Trichoderma atroviride that expresses the Aspergillus niger glucose oxidase gene goxA under a homologous pathogen-inducible promoter (nag1) has been constructed, with the aim of increasing the ability of this biocontrol agent (BCA) to attack phytopathogenic fungi and enhance plant systemic disease resistance. The sporulation and growth rate of the transgenic progenies were similar to the wild-type strain P1. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted extracellularly. The transformed strain SJ3 4, containing 12-14 copies of the transgene, produced significantly less N-acetyl-glucosaminidase and endochitinase then wild type. However, the ability of its culture filtrate to inhibit the germination of Botrytis cinerea spores was increased by about 3-fold. In comparison to P1, the transgenic strain more quickly overgrew and lysed in vitro the pathogens Rhizoctonia solani and Pythium ultimum. In assays in vivo SJ3 4 showed a highly improved biocontrol ability in soil heavily infested with those pathogens, where the wild type was unable to protect the plant and allow seeds to germinate. The Trichoderma-gox was able to induce a much higher level of systemic resistance against the foliar pathogen B. cinerea, as compared to the parent strain. This work demonstrate that i) heterologous genes driven by pathogen-inducible promoters can improve the biocontrol and Induced Systemic Resistance properties of fungal BCAs such as Trichoderma spp., and ii) these microbes can be used as vectors to provide the plant with useful molecules able, for instance, to increase pathogen