期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC 被引量:94
1
作者 Aijun Zhu Chuanpei Xu +2 位作者 Zhi Li Jun Wu Zhenbing Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期317-328,共12页
A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimi... A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional (3D) stacked system-on-chip (SoC) by hybridizing grey wolf optimization with differential evo- lution (HGWO). Because basic grey wolf optimization (GWO) is easy to fall into stagnation when it carries out the operation of at- tacking prey, and differential evolution (DE) is integrated into GWO to update the previous best position of grey wolf Alpha, Beta and Delta, in order to force GWO to jump out of the stagnation with DE's strong searching ability. The proposed algorithm can accele- rate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance of the proposed algorithm. Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration. 展开更多
关键词 META-HEURISTIC global optimization NP hard problem
在线阅读 下载PDF
Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization 被引量:15
2
作者 Chaohua Dai Weirong Chen +1 位作者 Yonghua Song Yunfang Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期300-311,共12页
A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search... A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search direction is based on empir- ical gradients by evaluating the response to the position changes, while step length is based on uncertainty reasoning by using a simple fuzzy rule. The effectiveness of the SOA is evaluated by using a challenging set of typically complex functions in compari- son to differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms. The simulation results show that the performance of the SOA is superior or comparable to that of the other algorithms. 展开更多
关键词 swarm intelligence global optimization human searching behaviors seeker optimization algorithm.
在线阅读 下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
3
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
Self-adaptive learning based discrete differential evolution algorithm for solving CJWTA problem 被引量:6
4
作者 Yu Xue Yi Zhuang +2 位作者 Tianquan Ni Siru Ni Xuezhi Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期59-68,共10页
Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness... Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness is presented. Final y, a model of the CJWTA problem is constructed. In order to solve the CJWTA problem efficiently, a self-adaptive learning based discrete differential evolution (SLDDE) algorithm is proposed by introduc-ing a self-adaptive learning mechanism into the traditional discrete differential evolution algorithm. The SLDDE algorithm steers four candidate solution generation strategies simultaneously in the framework of the self-adaptive learning mechanism. Computa-tional simulations are conducted on ten test instances of CJWTA problem. The experimental results demonstrate that the proposed SLDDE algorithm not only can generate better results than only one strategy based discrete differential algorithms, but also outper-forms two algorithms which are proposed recently for the weapon-target assignment problems. 展开更多
关键词 global optimization SELF-ADAPTIVE discrete differentialevolution weapon-target assignment (WTA) cooperative jamming.
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
5
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Multi-sensor optimal weighted fusion incremental Kalman smoother 被引量:5
6
作者 SUN Xiaojun YAN Guangming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期262-268,共7页
In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and ... In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility. 展开更多
关键词 weighted fusion incremental Kalman filtering poor observation condition Kalman smoother global optimality
在线阅读 下载PDF
Orthogonal genetic algorithm for solving quadratic bilevel programming problems 被引量:4
7
作者 Hong Li Yongchang Jiao Li Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期763-770,共8页
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod... A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations. 展开更多
关键词 orthogonal genetic algorithm quadratic bilevel programming problem Karush-Kuhn-Tucker conditions orthogonal experimental design global optimal solution.
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
8
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
Chaos-enhanced moth-flame optimization algorithm for global optimization 被引量:3
9
作者 LI Hongwei LIU Jianyong +3 位作者 CHEN Liang BAI Jingbo SUN Yangyang LU Kai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1144-1159,共16页
Moth-flame optimization(MFO)is a novel metaheuristic algorithm inspired by the characteristics of a moth’s navigation method in nature called transverse orientation.Like other metaheuristic algorithms,it is easy to f... Moth-flame optimization(MFO)is a novel metaheuristic algorithm inspired by the characteristics of a moth’s navigation method in nature called transverse orientation.Like other metaheuristic algorithms,it is easy to fall into local optimum and leads to slow convergence speed.The chaotic map is one of the best methods to improve exploration and exploitation of the metaheuristic algorithms.In the present study,we propose a chaos-enhanced MFO(CMFO)by incorporating chaos maps into the MFO algorithm to enhance its performance.The chaotic map is utilized to initialize the moths’population,handle the boundary overstepping,and tune the distance parameter.The CMFO is benchmarked on three groups of benchmark functions to find out the most efficient one.The performance of the CMFO is also verified by using two real engineering problems.The statistical results clearly demonstrate that the appropriate chaotic map(singer map)embedded in the appropriate component of MFO can significantly improve the performance of MFO. 展开更多
关键词 moth-flame optimization(MFO) chaotic map METAHEURISTIC global optimization
在线阅读 下载PDF
Global optimization by small-world optimization algorithm based on social relationship network 被引量:1
10
作者 李晋航 邵新宇 +2 位作者 龙渊铭 朱海平 B.R.Schlessman 《Journal of Central South University》 SCIE EI CAS 2012年第8期2247-2265,共19页
A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociol... A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems. 展开更多
关键词 global optimization intelligent algorithm small-world optimization decentralized search
在线阅读 下载PDF
An optimization method: hummingbirds optimization algorithm 被引量:1
11
作者 ZHANG Zhuoran HUANG Changqiang +2 位作者 HUANG Hanqiao TANG Shangqin DONG Kangsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期386-404,共19页
This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching ph... This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching phase and a guide-searching phase. With these two phases, the exploration and exploitation abilities of the algorithm can be balanced. Both the constrained and unconstrained benchmark functions are employed to test the performance of HOA. Ten classic benchmark functions are considered as unconstrained benchmark functions. Meanwhile, two engineering design optimization problems are employed as constrained benchmark functions. The results of these experiments demonstrate HOA is efficient and capable of global optimization. 展开更多
关键词 population-based algorithm global optimization hummingbirds optimization algorithm(HOA) engineering design optimization
在线阅读 下载PDF
Improved gravitational search algorithm based on free search differential evolution 被引量:1
12
作者 Yong Liu Liang Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期690-698,共9页
This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential... This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential evolution (FSDE). This combination incorporates FSDE into the optimization process of GSA with an attempt to avoid the premature convergence in GSA. This strategy makes full use of the exploration ability of GSA and the exploitation ability of FSDE. IGSA is tested on a suite of benchmark functions. The experimental results demonstrate the good performance of IGSA. 展开更多
关键词 gravitational search algorithm (GSA) free search differential evolution (FSDE) global optimization.
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
13
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Global optimization for ducted coaxial-rotors aircraft based on Kriging model and improved particle swarm optimization algorithm 被引量:2
14
作者 杨璐鸿 刘顺安 +1 位作者 张冠宇 王春雪 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1315-1323,共9页
To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example an... To improve the operational efficiency of global optimization in engineering, Kriging model was established to simplify the mathematical model for calculations. Ducted coaxial-rotors aircraft was taken as an example and Fluent software was applied to the virtual prototype simulations. Through simulation sample points, the total lift of the ducted coaxial-rotors aircraft was obtained. The Kriging model was then constructed, and the function was fitted. Improved particle swarm optimization(PSO) was also utilized for the global optimization of the Kriging model of the ducted coaxial-rotors aircraft for the determination of optimized global coordinates. Finally, the optimized results were simulated by Fluent. The results show that the Kriging model and the improved PSO algorithm significantly improve the lift performance of ducted coaxial-rotors aircraft and computer operational efficiency. 展开更多
关键词 ducted coaxial rotors aircraft Kriging model particle swarm optimization global optimization
在线阅读 下载PDF
Self-tuning measurement fusion white noise deconvolution estimator with correlated noises
15
作者 Xiaojun Sun Zili Deng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期666-674,共9页
For the multisensor linear discrete time-invariant stochastic systems with correlated noises and unknown noise statistics,an on-line noise statistics estimator is presented by using the correlation method.Substituting... For the multisensor linear discrete time-invariant stochastic systems with correlated noises and unknown noise statistics,an on-line noise statistics estimator is presented by using the correlation method.Substituting it into the steady-state Riccati equation,the self-tuning Riccati equation is obtained.Using the Kalman filtering method,based on the self-tuning Riccati equation,a self-tuning weighted measurement fusion white noise deconvolution estimator is presented.By the dynamic error system analysis(DESA) method,it is proved that the self-tuning fusion white noise deconvolution estimator converges to the optimal fusion steadystate white noise deconvolution estimator in a realization,so that it has the asymptotic global optimality.A simulation example for Bernoulli-Gaussian input white noise shows its effectiveness. 展开更多
关键词 multisensor information fusion measurement fusion self-tuning fuser white noise deconvolution asymptotic global optimality Kalman filtering convergence.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部