Geographic information systems (GIS) are a widely used tool in urban planning and management. More and more cities and decision-makers require its attributes of promptness, precision and visualization. But the applica...Geographic information systems (GIS) are a widely used tool in urban planning and management. More and more cities and decision-makers require its attributes of promptness, precision and visualization. But the application of GIS in urban environmental management is still a new field and relevant researches are getting on tardily. As a subsystem of GIS, an urban environmental management geographic information system (UEMGIS) should be a complex multi-discipline and multi-objective tool to perform quantitative multi-dimension analysis and to transfer the results into an expression legible to an ordinary user. It should be a dynamic system of prompt functions based on upgradable databases, and be composed of many subsystems respectively specialized in items about water, air, waste and noise as well as relative standards and regulations. However, existing UEMGISs mostly rely on the basic GIS too much to design the actual requirements of applications and managements in themselves, and the unavailability of sufficient fundamental data has retarded their improvement. In the design of a UEMGIS, the standardization of data classification should be taken into consideration to make the data exchangeable and shareable among its subsystems and within every subsystem, and the applicable error limits for input data should be defined in accordance with the user抯 required precision of data out. Data acquisition can be easy and quick if remote sensing, global positioning system (GPS) and other technologies are combined with GIS. Rapidly progressing information technologies have been giving a bright prospect for the melioration of UEMGIS that will have great potential and wide application in environmental conservation.展开更多
Identifying influential nodes in complex networks is essential for network robust and stability,such as viral marketing and information control.Various methods have been proposed to define the influence of nodes.In th...Identifying influential nodes in complex networks is essential for network robust and stability,such as viral marketing and information control.Various methods have been proposed to define the influence of nodes.In this paper,we comprehensively consider the global position and local structure to identify influential nodes.The number of iterations in the process of k-shell decomposition is taken into consideration,and the improved k-shell decomposition is then put forward.The improved k-shell decomposition and degree of target node are taken as the benchmark centrality,in addition,as is well known,the effect between node pairs is inversely proportional to the shortest path length between two nodes,and then we also consider the effect of neighbors on target node.To evaluate the performance of the proposed method,susceptible-infected(SI)model is adopted to simulate the spreading process in four real networks,and the experimental results show that the proposed method has obvious advantages over classical centrality measures in identifying influential nodes.展开更多
The development of spatio-temporal database systems is primarily motivated by applications which track and present mobile objects. In this paper, solutions for establishing the moving object database based on GPS/GIS ...The development of spatio-temporal database systems is primarily motivated by applications which track and present mobile objects. In this paper, solutions for establishing the moving object database based on GPS/GIS environment are presented, and a data modeling of moving object is given by using Temporal logical to extent the query language, finally the application model in cargo delivery system is shown.展开更多
Solar radiation pressure is the main driving force and error source for precision orbit determination of navigation satellites.It is proportional to the solar irradiance,which is the"sun constant".In regular...Solar radiation pressure is the main driving force and error source for precision orbit determination of navigation satellites.It is proportional to the solar irradiance,which is the"sun constant".In regular calculation,the"solar constant"is regard as a constant.However,due to the existence of sunspots,flares,etc.,the solar constant is not fixed,the change in the year is about 1%.To investigate the variation of solar irradiance,we use interpolation and average segment modeling of total solar irradiance data of SORCE,establishing variance solar radiation pressure(VARSRP)model and average solar radiation pressure(AVESRP)model based on the built solar pressure model(SRPM)(constant model).According to observation data of global positioning system(GPS)and Beidou system(BDS)in 2015 and comparing the solar pressure acceleration of VARSRP,AVESRP and SRPM,the magnitude of change can reach 10-10 m/s^2.In addition,according to the satellite precise orbit determination,for GPS satellites,the results of VARSRP and AVESRP are slightly smaller than those of the SRPM model,and the improvement is between 0.1 to 0.5 mm.For geosynchronous orbit(GEO)satellites of BDS,The AVESRP and VARSRP have an improvement of 3.5 mm and 4.0 mm,respectively,based on overlapping arc,and SLR check results show the AVESRP model and the VARSRP model is improved by 2.3 mm and 3.5 mm,respectively.Moreover,the change of inclined geosynchronous orbit(IGSO)satellites and medium earth orbit(MEO)satellites is relatively small,and the improvement is smaller than 0.5 mm.展开更多
Applications of remote sensing (RS), global positioning system (GPS), geographic information system (GIS) and combination of three-S techniques in the forest management are introduced. It indicates that, with the quic...Applications of remote sensing (RS), global positioning system (GPS), geographic information system (GIS) and combination of three-S techniques in the forest management are introduced. It indicates that, with the quickly improvement of the computer technique, the three-S system will become a very important part of the forestry management system.展开更多
This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to...This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to handle this attack.In the improved CapsNet,the gated recurrent unit(GRU)is added to the front of the full connection layer of the CapsNet.The improved CapsNet trains and updates the network parameters according to the historical measurements of the smart grid.The detection method uses different structures to extract the temporal and spatial features of the measurements simultaneously,which can accurately distinguish the attacked data from the normal data,to improve the detection accuracy.Finally,simulation experiments are carried out on IEEE 14-,IEEE 118-bus systems.The experimental results show that compared with other detection methods,our method is proved to be more efficient.展开更多
The maritime tropospheric duct is a low-altitude anomalous refractivity structure over the ocean surface,and it can significantly affect the performance of many shore-based/shipboard radar and communication systems.We...The maritime tropospheric duct is a low-altitude anomalous refractivity structure over the ocean surface,and it can significantly affect the performance of many shore-based/shipboard radar and communication systems.We propose the idea that maritime tropospheric ducts can be retrieved from ocean forward-scattered low-elevation global positioning system(GPS) signals.Retrieval is accomplished by matching the measured power patterns of the signals to those predicted by the forward propagation model as a function of the modified refractivity profile.On the basis of a parabolic equation method and bistatic radar equation,we develop such a forward model for computing the trapped propagation characteristics of an ocean forward-scattered GPS signal within a tropospheric duct.A new GPS scattering initial field is defined for this model to start the propagation modeling.A preliminary test on the performance of this model is conducted using measured data obtained from a 2009-experiment in the South China Sea.Results demonstrate that this model can predict GPS propagation characteristics within maritime tropospheric ducts and serve as a forward model for duct inversion.展开更多
This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used...This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used in many applications like Wireless local area network(WLAN),WiFi,Bluetooth,ZigBee and Global System for mobile communications(GSM).This new design can be employed for the IEEE 802.15.4 standard in industrial,scientific and medical(ISM) Band.The enhancement mode pseudomorphic high electron mobility transistor PHEMT is used here due to its high linearity,better performance and less noisy operation.The common source inductive degeneration method is employed here to enhance the gain of amplifier.The amplifier produces a gain of more than 17 dB and noise figure of about 0.5 dB.The lower values of S11 and S22 reflect the accuracy of impedance matching network placed at the input and output sides of amplifier.Agilent Advance Design System(ADS) is used for the design and simulation purpose.Further the layout of design is developed on the FR4 substrate.展开更多
In this paper,we describe the estimation of low-altitude refractivity structure from simulation and real ground-based GPS delays.The vertical structure of the refractive environment is modeled using three parameters,i...In this paper,we describe the estimation of low-altitude refractivity structure from simulation and real ground-based GPS delays.The vertical structure of the refractive environment is modeled using three parameters,i.e.,duct height,duct thickness,and duct slope.The refractivity model is implemented with a priori constraints on the duct height,thickness,and strength,which might be derived from soundings or numerical weather-prediction models.A ray propagation model maps the refractivity structure into a replica field.Replica fields are compared with the simulation observed data using a squarederror objective function.A global search for the three environmental parameters is performed using a genetic algorithm.The inversion is assessed by comparing the refractivity profiles from the radiosondes to those estimated.This technique could provide near-real-time estimation of the ducting effect.The results suggest that ground-based GPS provides significant atmospheric refractivity information,despite certain fundamental limitations of ground-based measurements.Radiosondes are typically launched just a few times daily.Consequently,estimates of temporally and spatially varying refractivity that assimilate GPS delays could substantially improve over-estimates caused by using radiosonde data alone.展开更多
Global navigation satellite system(GNSS) can be employed as a transmitter to composite bistatic synthetic aperture radar(BiSAR).As GNSS signal is quite different from the traditional radar signal,modified spectral...Global navigation satellite system(GNSS) can be employed as a transmitter to composite bistatic synthetic aperture radar(BiSAR).As GNSS signal is quite different from the traditional radar signal,modified spectral analysis(SPECAN) algorithm is proposed and applied in the BiSAR system.The modifications include Doppler centroid compensation,range curve correction and azimuth processing method.The modified SPECAN algorithm solves the imaging problem under the condition of huge range migration,long synthetic aperture time and phase-coded signal.The proposed algorithm is verified by experiment results.展开更多
This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, includ...This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, including land-coverclassification and change detection, wetland evolutionary processes, landscape-change analyses, channel migration, flood and wetlands resource monitoring and spatial quantitative analyses/modeling, ecosystem service evaluation, ecological processes and risk assessments, disease control, water quality monitoring/modeling, pollution monitoring/modeling, wetlands hydrology, wetland information systems and WebGIS. The limitations and needs for optimal use of these technologies are discussed, such as the limited advanced technical knowledge and skills, low awareness and capacity, unclear link between GIS output and policy making, lack of supporting policies and standards, lack of a wetlands geo-information networklimite, and the use of these techniques in wetland research. It is suggested that for realising true applications of RS, GIS and GPS technologies, the availability, accessibility, reliability, homogeneity, and continuity of wetlands-related geo-information enabling environment, policies and standards, and funding are needed.展开更多
基金Funded by National Nature Science Foundation of China (Nos. 59978054 and 59838300)
文摘Geographic information systems (GIS) are a widely used tool in urban planning and management. More and more cities and decision-makers require its attributes of promptness, precision and visualization. But the application of GIS in urban environmental management is still a new field and relevant researches are getting on tardily. As a subsystem of GIS, an urban environmental management geographic information system (UEMGIS) should be a complex multi-discipline and multi-objective tool to perform quantitative multi-dimension analysis and to transfer the results into an expression legible to an ordinary user. It should be a dynamic system of prompt functions based on upgradable databases, and be composed of many subsystems respectively specialized in items about water, air, waste and noise as well as relative standards and regulations. However, existing UEMGISs mostly rely on the basic GIS too much to design the actual requirements of applications and managements in themselves, and the unavailability of sufficient fundamental data has retarded their improvement. In the design of a UEMGIS, the standardization of data classification should be taken into consideration to make the data exchangeable and shareable among its subsystems and within every subsystem, and the applicable error limits for input data should be defined in accordance with the user抯 required precision of data out. Data acquisition can be easy and quick if remote sensing, global positioning system (GPS) and other technologies are combined with GIS. Rapidly progressing information technologies have been giving a bright prospect for the melioration of UEMGIS that will have great potential and wide application in environmental conservation.
文摘Identifying influential nodes in complex networks is essential for network robust and stability,such as viral marketing and information control.Various methods have been proposed to define the influence of nodes.In this paper,we comprehensively consider the global position and local structure to identify influential nodes.The number of iterations in the process of k-shell decomposition is taken into consideration,and the improved k-shell decomposition is then put forward.The improved k-shell decomposition and degree of target node are taken as the benchmark centrality,in addition,as is well known,the effect between node pairs is inversely proportional to the shortest path length between two nodes,and then we also consider the effect of neighbors on target node.To evaluate the performance of the proposed method,susceptible-infected(SI)model is adopted to simulate the spreading process in four real networks,and the experimental results show that the proposed method has obvious advantages over classical centrality measures in identifying influential nodes.
基金Supported by the National Science Research Project (No.2001BA205A18)
文摘The development of spatio-temporal database systems is primarily motivated by applications which track and present mobile objects. In this paper, solutions for establishing the moving object database based on GPS/GIS environment are presented, and a data modeling of moving object is given by using Temporal logical to extent the query language, finally the application model in cargo delivery system is shown.
基金supported by the National Key Research and Development Program of China (No.2016YFB0501405)the National Natural Science Foundation of China (No.11973073)+1 种基金the Basic Project of Ministry of Science and Technology of China (No.2015FY310200)the Shanghai Key Laboratory of Space Navigation and Position Techniques (No.06DZ22101)
文摘Solar radiation pressure is the main driving force and error source for precision orbit determination of navigation satellites.It is proportional to the solar irradiance,which is the"sun constant".In regular calculation,the"solar constant"is regard as a constant.However,due to the existence of sunspots,flares,etc.,the solar constant is not fixed,the change in the year is about 1%.To investigate the variation of solar irradiance,we use interpolation and average segment modeling of total solar irradiance data of SORCE,establishing variance solar radiation pressure(VARSRP)model and average solar radiation pressure(AVESRP)model based on the built solar pressure model(SRPM)(constant model).According to observation data of global positioning system(GPS)and Beidou system(BDS)in 2015 and comparing the solar pressure acceleration of VARSRP,AVESRP and SRPM,the magnitude of change can reach 10-10 m/s^2.In addition,according to the satellite precise orbit determination,for GPS satellites,the results of VARSRP and AVESRP are slightly smaller than those of the SRPM model,and the improvement is between 0.1 to 0.5 mm.For geosynchronous orbit(GEO)satellites of BDS,The AVESRP and VARSRP have an improvement of 3.5 mm and 4.0 mm,respectively,based on overlapping arc,and SLR check results show the AVESRP model and the VARSRP model is improved by 2.3 mm and 3.5 mm,respectively.Moreover,the change of inclined geosynchronous orbit(IGSO)satellites and medium earth orbit(MEO)satellites is relatively small,and the improvement is smaller than 0.5 mm.
文摘Applications of remote sensing (RS), global positioning system (GPS), geographic information system (GIS) and combination of three-S techniques in the forest management are introduced. It indicates that, with the quickly improvement of the computer technique, the three-S system will become a very important part of the forestry management system.
文摘This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to handle this attack.In the improved CapsNet,the gated recurrent unit(GRU)is added to the front of the full connection layer of the CapsNet.The improved CapsNet trains and updates the network parameters according to the historical measurements of the smart grid.The detection method uses different structures to extract the temporal and spatial features of the measurements simultaneously,which can accurately distinguish the attacked data from the normal data,to improve the detection accuracy.Finally,simulation experiments are carried out on IEEE 14-,IEEE 118-bus systems.The experimental results show that compared with other detection methods,our method is proved to be more efficient.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61172031 and 41175012)
文摘The maritime tropospheric duct is a low-altitude anomalous refractivity structure over the ocean surface,and it can significantly affect the performance of many shore-based/shipboard radar and communication systems.We propose the idea that maritime tropospheric ducts can be retrieved from ocean forward-scattered low-elevation global positioning system(GPS) signals.Retrieval is accomplished by matching the measured power patterns of the signals to those predicted by the forward propagation model as a function of the modified refractivity profile.On the basis of a parabolic equation method and bistatic radar equation,we develop such a forward model for computing the trapped propagation characteristics of an ocean forward-scattered GPS signal within a tropospheric duct.A new GPS scattering initial field is defined for this model to start the propagation modeling.A preliminary test on the performance of this model is conducted using measured data obtained from a 2009-experiment in the South China Sea.Results demonstrate that this model can predict GPS propagation characteristics within maritime tropospheric ducts and serve as a forward model for duct inversion.
基金supported by the National Natural Science Foundation of China(Grant no. 61202399,61571063)
文摘This work is about the development of a super low noise amplifier with minimum power consumption and high gain for several wireless applications.The amplifier operates at frequency bands of 0.9-2.4 GHz and can be used in many applications like Wireless local area network(WLAN),WiFi,Bluetooth,ZigBee and Global System for mobile communications(GSM).This new design can be employed for the IEEE 802.15.4 standard in industrial,scientific and medical(ISM) Band.The enhancement mode pseudomorphic high electron mobility transistor PHEMT is used here due to its high linearity,better performance and less noisy operation.The common source inductive degeneration method is employed here to enhance the gain of amplifier.The amplifier produces a gain of more than 17 dB and noise figure of about 0.5 dB.The lower values of S11 and S22 reflect the accuracy of impedance matching network placed at the input and output sides of amplifier.Agilent Advance Design System(ADS) is used for the design and simulation purpose.Further the layout of design is developed on the FR4 substrate.
基金Project supported by the National Natural Science Foundation of China (Grant No. 41105013)the National Natural Science Foundation of Jiangsu Province,China (Grant No. BK2011122)+1 种基金the Specialized Research Fund for State Key Laboratories,China (Grant No. 201120FSIC-03)the City Meteorological Scientific Research Fund,China (Grant No. IUMKY&UMRF201111)
文摘In this paper,we describe the estimation of low-altitude refractivity structure from simulation and real ground-based GPS delays.The vertical structure of the refractive environment is modeled using three parameters,i.e.,duct height,duct thickness,and duct slope.The refractivity model is implemented with a priori constraints on the duct height,thickness,and strength,which might be derived from soundings or numerical weather-prediction models.A ray propagation model maps the refractivity structure into a replica field.Replica fields are compared with the simulation observed data using a squarederror objective function.A global search for the three environmental parameters is performed using a genetic algorithm.The inversion is assessed by comparing the refractivity profiles from the radiosondes to those estimated.This technique could provide near-real-time estimation of the ducting effect.The results suggest that ground-based GPS provides significant atmospheric refractivity information,despite certain fundamental limitations of ground-based measurements.Radiosondes are typically launched just a few times daily.Consequently,estimates of temporally and spatially varying refractivity that assimilate GPS delays could substantially improve over-estimates caused by using radiosonde data alone.
基金Sponsored by the National Natural Science Foundation of China(60890071-1160890071-0760890073)
文摘Global navigation satellite system(GNSS) can be employed as a transmitter to composite bistatic synthetic aperture radar(BiSAR).As GNSS signal is quite different from the traditional radar signal,modified spectral analysis(SPECAN) algorithm is proposed and applied in the BiSAR system.The modifications include Doppler centroid compensation,range curve correction and azimuth processing method.The modified SPECAN algorithm solves the imaging problem under the condition of huge range migration,long synthetic aperture time and phase-coded signal.The proposed algorithm is verified by experiment results.
基金This project was supported by National Natural Science Foundation of China (No. 30270275) Acknowledgement We thank State Forest Administration and the Chinese Academy of Sciences with its many research institutes for providing the information required for this paper. Also, a sincere thank to Bai Yajun for her patience and endless support in discussions and email correspondence.
文摘This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, including land-coverclassification and change detection, wetland evolutionary processes, landscape-change analyses, channel migration, flood and wetlands resource monitoring and spatial quantitative analyses/modeling, ecosystem service evaluation, ecological processes and risk assessments, disease control, water quality monitoring/modeling, pollution monitoring/modeling, wetlands hydrology, wetland information systems and WebGIS. The limitations and needs for optimal use of these technologies are discussed, such as the limited advanced technical knowledge and skills, low awareness and capacity, unclear link between GIS output and policy making, lack of supporting policies and standards, lack of a wetlands geo-information networklimite, and the use of these techniques in wetland research. It is suggested that for realising true applications of RS, GIS and GPS technologies, the availability, accessibility, reliability, homogeneity, and continuity of wetlands-related geo-information enabling environment, policies and standards, and funding are needed.