This paper investigates the stability and bifurcation phenomena of a cholera transmission model in which individuals who have recovered from the disease may become susceptible again.The threshold for determining disea...This paper investigates the stability and bifurcation phenomena of a cholera transmission model in which individuals who have recovered from the disease may become susceptible again.The threshold for determining disease prevalence is established,and the parameter conditions for the existence of equilibria are discussed.The Routh-Hurwitz criterion is applied to demonstrate the local asymptotic stability of equilibria.By utilizing composite matrices and geometric techniques,the global dynamic behavior of the endemic equilibrium is investigated,and the sufficient conditions for its global asymptotic stability are derived.Furthermore,the disease-free equilibrium is a saddle-node when the basic reproductive number is 1,and tthe transcritical bifurcation in this case is discussed.展开更多
This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggeri...This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggering times,a discontinuous event-trigger scheme is utilized to determine whether the sampling information is required to be sent outor not.Meanwhile,under the effect of communication delay,the trigger condition and SDSNNs are transformed into twotractable models by designing a fictitious delay function.Then,using the Lyapunov–Krasovskii stability theory,someinequality estimation techniques,and extended reciprocally convex combination method,two sufficient criteria are established for ensuring the global stabilization of the resulting closed-loop SDSNNs,respectively.A unified framework isderived that has the ability to handle the simultaneous existence of the communication delay,the properties of discontinuousevent-trigger scheme,as well as feedback controller design.Additionally,the developed results demonstrate a quantitativerelationship among the event trigger parameter,communication delay,and triggering times.Finally,two numerical examples are presented to illustrate the usefulness of the developed stabilization scheme.展开更多
A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obta...A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.展开更多
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no end...In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.展开更多
A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derive...A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.展开更多
In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch in...In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].展开更多
In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent lit...In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent literature.展开更多
In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
Recent research results indicate that individual awareness can play an important influence on epidemic spreading in networks. By local stability analysis, a significant conclusion is that the embedded awareness in an ...Recent research results indicate that individual awareness can play an important influence on epidemic spreading in networks. By local stability analysis, a significant conclusion is that the embedded awareness in an epidemic network can increase its epidemic threshold. In this paper, by using limit theory and dynamical system theory, we further give global stability analysis of a susceptible-infected-susceptible (SIS) epidemic model on networks with awareness. Results show that the obtained epidemic threshold is also a global stability condition for its endemic equilibrium, which implies the embedded awareness can enhance the epidemic threshold globally. Some numerical examples are presented to verify the theoretical results.展开更多
This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multipli...This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multiplicative techniques and energy method provided that the initial data are close to the equilibrium and the relaxation kernel is strongly positive definite and decays exponentially.展开更多
This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point,...This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.展开更多
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som...This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria.展开更多
A Holling type III predator-prey model with stage structure for prey is investi-gated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discu...A Holling type III predator-prey model with stage structure for prey is investi-gated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discussed. By using the uniformly persistence theory, the system is proven to be permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that the two boundary equilibria is globally asymptotically stable when the coexistence equilibrium is not feasible. By using compound matrix theory, the sucient conditions are obtained for the global stability of the coexistence equilibrium. At last, numerical simulations are carried out to illustrate the main results.展开更多
In this paper,an eco-epidemiological model with Beddington-DeAngelis functional response and a time delay representing the gestation period of the predator is studied.By means of Lyapunov functionals and Laselle’s i...In this paper,an eco-epidemiological model with Beddington-DeAngelis functional response and a time delay representing the gestation period of the predator is studied.By means of Lyapunov functionals and Laselle’s invariance principle,sufficient conditions are obtained for the global stability of the interior equilibrium and the disease-free equilibrium of the system,respectively.展开更多
Crystallographic stability is an important factor that affects the stability of perovskites.The stability dictates the commercial applications of lead-based organometal halide perovskites.The tolerance factor(t)and oc...Crystallographic stability is an important factor that affects the stability of perovskites.The stability dictates the commercial applications of lead-based organometal halide perovskites.The tolerance factor(t)and octahedral factor(μ)form the state-of-the-art criteria used to evaluate the perovskite crystallographic stability.We studied the crystallographic stabilities of halide and chalcogenide perovskites by exploring an effective alternative descriptor,the global instability index(GII)that was used as an indicator of the stability of perovskite oxides.We particularly focused on determining crystallographic reliability by calculating GII.We analyzed the bond valence models of the 243 halide and chalcogenide perovskites that occupied the lowest-energy cubic-phase structures determined by conducting the first-principles-based total energy minimization calculations.The decomposition energy(ΔHD)reflects the thermodynamic stability of the system and is considered as the benchmark that helps assess the effectiveness of GII in evaluating the crystallographic stability of the systems under study.The results indicated that the accuracy of predicting thermodynamic stability was significantly higher when GII(73.6%)was analyzed compared to the cases when t(55%)andμ(39.1%)were analyzed to determine the stability.The results obtained from the machine learning-based data mining method further indicate that GII is an important descriptor of the stability of the perovskite family.展开更多
We propose a novel rumor propagation model with guidance mechanism in hetero geneous complex networks.Firstly,the sharp threshold of rumor propagation,global stability of the information-equilibrium and information-pr...We propose a novel rumor propagation model with guidance mechanism in hetero geneous complex networks.Firstly,the sharp threshold of rumor propagation,global stability of the information-equilibrium and information-prevailingequilibrium under R_(0)<1 and R_(0)>1 is carried out by Lyapunov method and LaSalle's invariant principle.Next,we design an aperiodically intermittent stochastic stabilization method to suppress the rumor propagation.By using the Ito formula and exponential martingale inequality,the expression of the minimum control intensity is calculated.This method can effectively stabilize the rumor propagation by choosing a suitable perturb intensity and a perturb time ratio,while minimizing the control cost.Finally,numerical examples are given to illustrate the analysis and method of the paper.展开更多
The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robus...The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.展开更多
In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generaliz...In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results.展开更多
基金supported by the National Natural Science Foundation of China(No.12171337)the Central Government Guided Local Science and Technology Development Projects(No.2024ZYD0059)+1 种基金the Natural Science Foundation of Sichuan Province(No.2022NSFSC0529)the Open Research Fund Program of Data Recovery Key Laboratory of Sichuan Province(No.DRN2405)。
文摘This paper investigates the stability and bifurcation phenomena of a cholera transmission model in which individuals who have recovered from the disease may become susceptible again.The threshold for determining disease prevalence is established,and the parameter conditions for the existence of equilibria are discussed.The Routh-Hurwitz criterion is applied to demonstrate the local asymptotic stability of equilibria.By utilizing composite matrices and geometric techniques,the global dynamic behavior of the endemic equilibrium is investigated,and the sufficient conditions for its global asymptotic stability are derived.Furthermore,the disease-free equilibrium is a saddle-node when the basic reproductive number is 1,and tthe transcritical bifurcation in this case is discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62003194,61973199,61573008,and 61973200).
文摘This paper is concerned with the global stabilization of state-dependent switching neural networks(SDSNNs)viadiscontinuous event-triggered control with network-induced communication delay.Aiming at decreasing triggering times,a discontinuous event-trigger scheme is utilized to determine whether the sampling information is required to be sent outor not.Meanwhile,under the effect of communication delay,the trigger condition and SDSNNs are transformed into twotractable models by designing a fictitious delay function.Then,using the Lyapunov–Krasovskii stability theory,someinequality estimation techniques,and extended reciprocally convex combination method,two sufficient criteria are established for ensuring the global stabilization of the resulting closed-loop SDSNNs,respectively.A unified framework isderived that has the ability to handle the simultaneous existence of the communication delay,the properties of discontinuousevent-trigger scheme,as well as feedback controller design.Additionally,the developed results demonstrate a quantitativerelationship among the event trigger parameter,communication delay,and triggering times.Finally,two numerical examples are presented to illustrate the usefulness of the developed stabilization scheme.
文摘A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.
基金This work is supported by the National Sciences Foundation of China (10471040)the Youth Science Foundations of Shanxi Province (20021003).
文摘In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.
文摘A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.
基金supported by Japan Society for the Promotion of Science (Grant Scientific Research (c), No. 24540219 to the first author, JSPS Fellows, No.237213 to the second author, and No. 222176 to the third author)
文摘In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].
基金supported by Scientific Research(c),No.24540219 of Japan Society for the Promotion of Sciencesupported by Grant-in-Aid for Research Activity Start-up,No.25887011 of Japan Society for the Promotion of Science
文摘In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent literature.
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.61004101,11161013,and 61164020)the Natural Science Foundation of Guangxi Province,China(Grant Nos.2011GXNSFB018059 and 2013GXNSFAA019006)+2 种基金the 2012 Open Grant of Guangxi Key Lab of Wireless Wideband Communication and Signal Processing,Chinathe 2012 Open Grant of the State Key Laboratory of Integrated Services Networks of Xidian University,Chinathe Graduate Education Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)
文摘Recent research results indicate that individual awareness can play an important influence on epidemic spreading in networks. By local stability analysis, a significant conclusion is that the embedded awareness in an epidemic network can increase its epidemic threshold. In this paper, by using limit theory and dynamical system theory, we further give global stability analysis of a susceptible-infected-susceptible (SIS) epidemic model on networks with awareness. Results show that the obtained epidemic threshold is also a global stability condition for its endemic equilibrium, which implies the embedded awareness can enhance the epidemic threshold globally. Some numerical examples are presented to verify the theoretical results.
基金Sponsored by the NNSF of China(11031003,11271066,11326158)a grant of Shanghai Education Commission(13ZZ048)Chinese Universities Scientific Fund(CUSF-DH-D-2013068)
文摘This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multiplicative techniques and energy method provided that the initial data are close to the equilibrium and the relaxation kernel is strongly positive definite and decays exponentially.
基金Project supported by the National Natural Science Foundations of China(Grant No.70871056)the Society Science Foundation from Ministry of Education of China(Grant No.08JA790057)the Advanced Talents'Foundation and Student's Foundation of Jiangsu University,China(Grant Nos.07JDG054 and 07A075)
文摘This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.
基金supported by National Natural Science Foundation of China (Grant No 60674026)the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)Program for Innovative Research Team of Jiangnan University of China
文摘This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria.
基金Supported by the NSFC(11371368)Supported by the Basic Courses Department of OEC Foundation(Jcky1302)
文摘A Holling type III predator-prey model with stage structure for prey is investi-gated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discussed. By using the uniformly persistence theory, the system is proven to be permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that the two boundary equilibria is globally asymptotically stable when the coexistence equilibrium is not feasible. By using compound matrix theory, the sucient conditions are obtained for the global stability of the coexistence equilibrium. At last, numerical simulations are carried out to illustrate the main results.
基金This work was supported by the National Natural Science Foundation of China(No.11371368)and(No.11871316)。
文摘In this paper,an eco-epidemiological model with Beddington-DeAngelis functional response and a time delay representing the gestation period of the predator is studied.By means of Lyapunov functionals and Laselle’s invariance principle,sufficient conditions are obtained for the global stability of the interior equilibrium and the disease-free equilibrium of the system,respectively.
基金supported by the National Natural Science Foundation of China(62004080 and 92061113)the Postdoctoral Innovative Talents Supporting Program(BX20190143)the China Postdoctoral Science Foundation(2020M670834)。
文摘Crystallographic stability is an important factor that affects the stability of perovskites.The stability dictates the commercial applications of lead-based organometal halide perovskites.The tolerance factor(t)and octahedral factor(μ)form the state-of-the-art criteria used to evaluate the perovskite crystallographic stability.We studied the crystallographic stabilities of halide and chalcogenide perovskites by exploring an effective alternative descriptor,the global instability index(GII)that was used as an indicator of the stability of perovskite oxides.We particularly focused on determining crystallographic reliability by calculating GII.We analyzed the bond valence models of the 243 halide and chalcogenide perovskites that occupied the lowest-energy cubic-phase structures determined by conducting the first-principles-based total energy minimization calculations.The decomposition energy(ΔHD)reflects the thermodynamic stability of the system and is considered as the benchmark that helps assess the effectiveness of GII in evaluating the crystallographic stability of the systems under study.The results indicated that the accuracy of predicting thermodynamic stability was significantly higher when GII(73.6%)was analyzed compared to the cases when t(55%)andμ(39.1%)were analyzed to determine the stability.The results obtained from the machine learning-based data mining method further indicate that GII is an important descriptor of the stability of the perovskite family.
基金Project supported by the Guangzhou Science and Technology Project(Grant No.20210202710)Scientific Research Project of Guangzhou University(Grant No.YG2020010)。
文摘We propose a novel rumor propagation model with guidance mechanism in hetero geneous complex networks.Firstly,the sharp threshold of rumor propagation,global stability of the information-equilibrium and information-prevailingequilibrium under R_(0)<1 and R_(0)>1 is carried out by Lyapunov method and LaSalle's invariant principle.Next,we design an aperiodically intermittent stochastic stabilization method to suppress the rumor propagation.By using the Ito formula and exponential martingale inequality,the expression of the minimum control intensity is calculated.This method can effectively stabilize the rumor propagation by choosing a suitable perturb intensity and a perturb time ratio,while minimizing the control cost.Finally,numerical examples are given to illustrate the analysis and method of the paper.
基金Supported by the Natural Science Foundation of Shandong Province (ZR2010FM038,ZR2010FL017)
文摘The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.
文摘In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results.