Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si...Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance.展开更多
Based on the idea of zeroing the line of sight rate(LOSR),a novel nonlinear differential geometric(DG) law for intercepting the agile target is proposed.In the first part,the DG formulations are utilized to descri...Based on the idea of zeroing the line of sight rate(LOSR),a novel nonlinear differential geometric(DG) law for intercepting the agile target is proposed.In the first part,the DG formulations are utilized to describe the relatively kinematics model of missile and target,and the nonlinear DG guidance(DGG) law is proposed based on the nonlinear control theory to eliminate the influence brought by target.Further,the missile guidance commands are derived to overcome the information loss caused by decoupling condition,the new necessary initial condition is developed to guarantee capture the agile target.Then,the designed nonlinear DGG commands are transformed from an arc-length system to the time domain.A desirable aspect of the designed guidance law is that it does not require rigorous information about target acceleration.Representative numerical results show that the designed guidance law obtain a better performance than the traditional DGG law for agile target.展开更多
This work describes an experimental investigation into the influence of geometric micro-groove texture patterns on the tribological performance of stainless steel.Five geometries were studied:one with untextured and f...This work describes an experimental investigation into the influence of geometric micro-groove texture patterns on the tribological performance of stainless steel.Five geometries were studied:one with untextured and four with micro-groove textured making parallel,triangular,square and hexagonal patterns.The micro-groove textures were produced using an MFT-20laser system as well as a two-step laser surface texturing(LST)process.Tribological performance was measured using a pin-on-disk tribometer.The investigation showed that the two-step LST process could fabricate high-precision micro-grooves.The experimental data indicated that the micro-groove textured surfaces achieved the lower frictional coefficients than the untextured surface and the geometric patterns had significantly affected the tribological properties of samples in both lubricated and unlubricated states.The results were analyzed from the lubricant supplying and fluid dynamic pressure effect under lubricated conditions as well as abrasive capture and remove under dry friction conditions.展开更多
A minimum geometric power distortionless response beamforming approach against impulsive noise (including all α- stable noise) of unknown statistics is proposed. Due to that definite logarithmic moments require no ...A minimum geometric power distortionless response beamforming approach against impulsive noise (including all α- stable noise) of unknown statistics is proposed. Due to that definite logarithmic moments require no priori knowledge of impulsive noise, this new beamformer substitutes the logarithmic moments for the second-order moments and iteratively minimizes the "ge- ometric power" of the beamformer.s output snapshots, subjected to a linear constraint. Therefore, the proposed beamformer can provide significantly higher output geometric signal-to-noise-andinterference ratio. Moreover, the optimum weight vector is obtained by using a new iteration process. The simulation results prove that the new method is effective.展开更多
Without assumptions made on motion states of missile and target, an extended differential geometric guidance law is derived. Through introducing a line of sight rotation coordinate system, the derivation is simplified...Without assumptions made on motion states of missile and target, an extended differential geometric guidance law is derived. Through introducing a line of sight rotation coordinate system, the derivation is simplified and has more explicit physical significances. The extended law is theoretically applicable to any engagement scenarios. Then, on basis of the extended law, a modified one is designed without the requirement of target acceleration and an approach is proposed to determining the applied direction of commanded missile acceleration. Qualitative analysis is carried out to study the capture performance and a criterion for capture is given. Simulation results indicate the two laws are effective and make up the deficiency that pure proportional navigation suitable for endoatmospheric interceptions cannot deal with high-speed maneuvering targets. Furthermore, the correctness of the criterion is validated.展开更多
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
基金Project(52072412)supported by the National Natural Science Foundation of China。
文摘Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance.
基金supported by the Doctorial Innovation Fund (DY11104)the Aviation Science Innovation Fund of China (20090196005,20100196002)
文摘Based on the idea of zeroing the line of sight rate(LOSR),a novel nonlinear differential geometric(DG) law for intercepting the agile target is proposed.In the first part,the DG formulations are utilized to describe the relatively kinematics model of missile and target,and the nonlinear DG guidance(DGG) law is proposed based on the nonlinear control theory to eliminate the influence brought by target.Further,the missile guidance commands are derived to overcome the information loss caused by decoupling condition,the new necessary initial condition is developed to guarantee capture the agile target.Then,the designed nonlinear DGG commands are transformed from an arc-length system to the time domain.A desirable aspect of the designed guidance law is that it does not require rigorous information about target acceleration.Representative numerical results show that the designed guidance law obtain a better performance than the traditional DGG law for agile target.
基金Project(51305023) supported by the National Natural Science Foundation of ChinaProject(FRF-GF-17-B20) supported by the Fundamental Research Funds for the Central Universities of China
文摘This work describes an experimental investigation into the influence of geometric micro-groove texture patterns on the tribological performance of stainless steel.Five geometries were studied:one with untextured and four with micro-groove textured making parallel,triangular,square and hexagonal patterns.The micro-groove textures were produced using an MFT-20laser system as well as a two-step laser surface texturing(LST)process.Tribological performance was measured using a pin-on-disk tribometer.The investigation showed that the two-step LST process could fabricate high-precision micro-grooves.The experimental data indicated that the micro-groove textured surfaces achieved the lower frictional coefficients than the untextured surface and the geometric patterns had significantly affected the tribological properties of samples in both lubricated and unlubricated states.The results were analyzed from the lubricant supplying and fluid dynamic pressure effect under lubricated conditions as well as abrasive capture and remove under dry friction conditions.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2007AA701403)
文摘A minimum geometric power distortionless response beamforming approach against impulsive noise (including all α- stable noise) of unknown statistics is proposed. Due to that definite logarithmic moments require no priori knowledge of impulsive noise, this new beamformer substitutes the logarithmic moments for the second-order moments and iteratively minimizes the "ge- ometric power" of the beamformer.s output snapshots, subjected to a linear constraint. Therefore, the proposed beamformer can provide significantly higher output geometric signal-to-noise-andinterference ratio. Moreover, the optimum weight vector is obtained by using a new iteration process. The simulation results prove that the new method is effective.
文摘Without assumptions made on motion states of missile and target, an extended differential geometric guidance law is derived. Through introducing a line of sight rotation coordinate system, the derivation is simplified and has more explicit physical significances. The extended law is theoretically applicable to any engagement scenarios. Then, on basis of the extended law, a modified one is designed without the requirement of target acceleration and an approach is proposed to determining the applied direction of commanded missile acceleration. Qualitative analysis is carried out to study the capture performance and a criterion for capture is given. Simulation results indicate the two laws are effective and make up the deficiency that pure proportional navigation suitable for endoatmospheric interceptions cannot deal with high-speed maneuvering targets. Furthermore, the correctness of the criterion is validated.