The Internet now is a large-scale platform with big data. Finding truth from a huge dataset has attracted extensive attention, which can maintain the quality of data collected by users and provide users with accurate ...The Internet now is a large-scale platform with big data. Finding truth from a huge dataset has attracted extensive attention, which can maintain the quality of data collected by users and provide users with accurate and efficient data. However, current truth finder algorithms are unsatisfying, because of their low accuracy and complication. This paper proposes a truth finder algorithm based on entity attributes (TFAEA). Based on the iterative computation of source reliability and fact accuracy, TFAEA considers the interactive degree among facts and the degree of dependence among sources, to simplify the typical truth finder algorithms. In order to improve the accuracy of them, TFAEA combines the one-way text similarity and the factual conflict to calculate the mutual support degree among facts. Furthermore, TFAEA utilizes the symmetric saturation of data sources to calculate the degree of dependence among sources. The experimental results show that TFAEA is not only more stable, but also more accurate than the typical truth finder algorithms.展开更多
Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful fo...Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful for users.Thus,a new approach to hierarchical decision rules mining is provided in this paper,in which similarity direction measure is introduced to deal with hybrid data.This approach can mine hierarchical decision rules by adjusting similarity measure parameters and the level of concept hierarchy trees.展开更多
基金supported by the National Natural Science Foundation of China(61472192)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)
文摘The Internet now is a large-scale platform with big data. Finding truth from a huge dataset has attracted extensive attention, which can maintain the quality of data collected by users and provide users with accurate and efficient data. However, current truth finder algorithms are unsatisfying, because of their low accuracy and complication. This paper proposes a truth finder algorithm based on entity attributes (TFAEA). Based on the iterative computation of source reliability and fact accuracy, TFAEA considers the interactive degree among facts and the degree of dependence among sources, to simplify the typical truth finder algorithms. In order to improve the accuracy of them, TFAEA combines the one-way text similarity and the factual conflict to calculate the mutual support degree among facts. Furthermore, TFAEA utilizes the symmetric saturation of data sources to calculate the degree of dependence among sources. The experimental results show that TFAEA is not only more stable, but also more accurate than the typical truth finder algorithms.
基金The research was supported by the National Natural Science Foundation of China under grant No:60775036, 60970061the Higher Education Nature Science Research Fund Project of Jiangsu Province under grant No: 09KJD520004.
文摘Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful for users.Thus,a new approach to hierarchical decision rules mining is provided in this paper,in which similarity direction measure is introduced to deal with hybrid data.This approach can mine hierarchical decision rules by adjusting similarity measure parameters and the level of concept hierarchy trees.