This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtai...This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's f...Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.展开更多
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod...A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.展开更多
The swine industry in China is a thriving and evolving industry that has shown phenomenal growth over the past 10 years. To insure long term success and viability in a worldwide competitive industry such as pork, ther...The swine industry in China is a thriving and evolving industry that has shown phenomenal growth over the past 10 years. To insure long term success and viability in a worldwide competitive industry such as pork, there is need for a National Swine Genetic Improvement Program. This program needs to draw on expertise and technology from across the world for its development, but it should be based on the structure of the pig industry in China and be led by Chinese scientists, administrators and producers. National Genetic Improvement requires more than just technology. A successful program of national genetic improvement will require cooperation from the industry and the government. The support for the university system is essential for the success of the pig industry. The university system has a vital role on education (of students, faculty, producers and consumers) as well as research and technology transfer. The government could also have a role in supporting the central test stations and AI stations across the country. An accurate and comprehensive pedigree maintenance system is essential to genetic improvement. And it will be vitally important to be active in the importation of new genetics to sample other populations.展开更多
Genetic selection in pigs through BLUP was very successful. However, strong selection mainly on growth and number of born alive decreased fitness and reduced environmental changes that animals can tolerate especially ...Genetic selection in pigs through BLUP was very successful. However, strong selection mainly on growth and number of born alive decreased fitness and reduced environmental changes that animals can tolerate especially under suboptimal environments. Additional challenges are genetic differences between purebreds (selected animals) and crossbreds (commercial animals), and possibly different environments for these groups of animals. A successful genetic selection at this time requires comprehensive data for all levels of the pyramid, multitrait models for a variety of traits including categorical and survival, and software that can implement complicated models while supporting large data sets. Many projects in pig genetic evaluation are carried out at the University of Georgia. Those studies are supported by software family called BGF90.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
The Cotton Programme of CIRAD undertakesdifferent research programs aiming at utilizingDNA molecular markers for an applied molecularbreeding of cotton.These programs cover areasfrom marker-assisted selection for fibe...The Cotton Programme of CIRAD undertakesdifferent research programs aiming at utilizingDNA molecular markers for an applied molecularbreeding of cotton.These programs cover areasfrom marker-assisted selection for fiber qualityto functional genomic study of cotton fiberdevelopment.The present communication willgive an overview of major achievements in thesea reas.展开更多
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ...Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.展开更多
基金Projects(52108364,52278398)supported by the National Natural Science Foundation of ChinaProject(211179)supported by the Royal Society,UK+1 种基金Project(22CX06051A)supported by the Independent Innovation Research Plan Project of China University of Petroleum(East China)Project(ZR2023QE004)supported by the Shandong Provincial Natural Science Foundation,China。
文摘This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects.
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
基金supported by the National Natural Science Fundation of China (60374063)
文摘Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.
基金supported by the National Natural Science Foundation of China (60873099)
文摘A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.
文摘The swine industry in China is a thriving and evolving industry that has shown phenomenal growth over the past 10 years. To insure long term success and viability in a worldwide competitive industry such as pork, there is need for a National Swine Genetic Improvement Program. This program needs to draw on expertise and technology from across the world for its development, but it should be based on the structure of the pig industry in China and be led by Chinese scientists, administrators and producers. National Genetic Improvement requires more than just technology. A successful program of national genetic improvement will require cooperation from the industry and the government. The support for the university system is essential for the success of the pig industry. The university system has a vital role on education (of students, faculty, producers and consumers) as well as research and technology transfer. The government could also have a role in supporting the central test stations and AI stations across the country. An accurate and comprehensive pedigree maintenance system is essential to genetic improvement. And it will be vitally important to be active in the importation of new genetics to sample other populations.
文摘Genetic selection in pigs through BLUP was very successful. However, strong selection mainly on growth and number of born alive decreased fitness and reduced environmental changes that animals can tolerate especially under suboptimal environments. Additional challenges are genetic differences between purebreds (selected animals) and crossbreds (commercial animals), and possibly different environments for these groups of animals. A successful genetic selection at this time requires comprehensive data for all levels of the pyramid, multitrait models for a variety of traits including categorical and survival, and software that can implement complicated models while supporting large data sets. Many projects in pig genetic evaluation are carried out at the University of Georgia. Those studies are supported by software family called BGF90.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
文摘The Cotton Programme of CIRAD undertakesdifferent research programs aiming at utilizingDNA molecular markers for an applied molecularbreeding of cotton.These programs cover areasfrom marker-assisted selection for fiber qualityto functional genomic study of cotton fiberdevelopment.The present communication willgive an overview of major achievements in thesea reas.
基金supported by the National Natural Science Foundation of China(724701189072431011).
文摘Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.