期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation 被引量:5
1
作者 Ebrahim Ghotbi Ravandi Reza Rahmannejad +1 位作者 Amir Ehsan Feili Monfared Esmaeil Ghotbi Ravandi 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期733-737,共5页
Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations betw... Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations between deformation modulus and rock mass classifcation,and estimating from laboratory tests results.In this paper,a back analysis calculation is performed to present an equation for estimation of the rock mass modulus of deformation using genetic programming(GP)and numerical modeling.A database of 40,960 datasets,including vertical stress(rz),horizontal to vertical stresses ratio(k),Poisson’s ratio(m),radius of circular tunnel(r)and wall displacement of circular tunnel on the horizontal diameter(d)for input parameters and modulus of deformation for output,was established.The selected parameters are easy to determine and rock mass modulus of deformation can be obtained from instrumentation data of any size circular galleries.The resulting RMSE of 0.86 and correlation coeffcient of97%of the proposed equation demonstrated the capability of the computer program(CP)generated by GP. 展开更多
关键词 Modulus of deformation(Em) DISPLACEMENT Numerical modeling genetic programming(GP) Back analysis
在线阅读 下载PDF
GP Algorithm-Based Fourier Transform Infrared Spectrum Trend Term Removal Model
2
作者 Bo Yan Shuaihui Li Hao Chen 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期41-51,共11页
Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such ... Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such as highly correlated initial values of the expression parameters,the need to pre-estimate the trend term shape,and poor fitting accuracy at low signal-to-noise ratios.In order to achieve real-time and robust trend term removal,a new trend term removal method using genetic programming(GP)in symbolic regression is constructed in this paper,and the FTIR simulation interference results and experimental measurement data for common volatile organic compounds(VOCs)gases are analyzed.The results show that the genetic programming algorithm can both reduce the initial value requirement and greatly improve the trend term accuracy by 20%-30% in three evaluation indicators,which is suitable for gas FTIR detection in complex scenarios. 展开更多
关键词 Fourier transform infrared spectroscopy(FTIR) genetic programming(GP) trend term removal
在线阅读 下载PDF
Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks 被引量:11
3
作者 Ahmet Teymen Engin Cemal Mengüç 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期785-797,共13页
In this study,uniaxial compressive strength(UCS),unit weight(UW),Brazilian tensile strength(BTS),Schmidt hardness(SHH),Shore hardness(SSH),point load index(Is50)and P-wave velocity(Vp)properties were determined.To pre... In this study,uniaxial compressive strength(UCS),unit weight(UW),Brazilian tensile strength(BTS),Schmidt hardness(SHH),Shore hardness(SSH),point load index(Is50)and P-wave velocity(Vp)properties were determined.To predict the UCS,simple regression(SRA),multiple regression(MRA),artificial neural network(ANN),adaptive neuro-fuzzy inference system(ANFIS)and genetic expression programming(GEP)have been utilized.The obtained UCS values were compared with the actual UCS values with the help of various graphs.Datasets were modeled using different methods and compared with each other.In the study where the performance indice PIat was used to determine the best performing method,MRA method is the most successful method with a small difference.It is concluded that the mean PIat equal to 2.46 for testing dataset suggests the superiority of the MRA,while these values are 2.44,2.33,and 2.22 for GEP,ANFIS,and ANN techniques,respectively.The results pointed out that the MRA can be used for predicting UCS of rocks with higher capacity in comparison with others.According to the performance index assessment,the weakest model among the nine model is P7,while the most successful models are P2,P9,and P8,respectively. 展开更多
关键词 Uniaxial compressive strength Adaptive neuro-fuzzy inference system Multiple regression Artificial neural network genetic expression programming
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部