期刊文献+
共找到28,750篇文章
< 1 2 250 >
每页显示 20 50 100
基于非支配排序遗传算法NSGA-Ⅲ的多目标屏蔽智能优化研究 被引量:1
1
作者 王梦琪 郑征 +3 位作者 梅其良 彭超 高静 周岩 《原子能科学技术》 北大核心 2025年第2期422-428,共7页
本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化... 本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化的屏蔽方案。基于优化后的屏蔽方案,建立真实的三维蒙特卡罗计算模型,和基于混凝土、聚乙烯或含硼硅树脂的方案进行对比,评估优化方案的屏蔽效果。评价指标包括屏蔽厚度、重量、总剂量率和价格等。结果显示,基于所开发的多目标屏蔽智能优化方法优化得到的方案各有特点,包含了多个优选的方案,为设计者提供了更丰富的选择。 展开更多
关键词 多目标优化算法 屏蔽 乏燃料运输船舶 第3代非支配排序遗传算法
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型 被引量:7
2
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:2
3
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
4
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 BP神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
基于PSO-GA模型的供水管网漏损预测研究 被引量:1
5
作者 彭燕莉 刘俊红 +2 位作者 陶修斌 覃佳肖 朱雅 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第1期121-129,共9页
准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某... 准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某城镇的供水管网为例,分别对单点和多点(2处及以上)漏损工况进行模拟评估。提出的供水管网漏损预测模型在单点漏损工况下,预测漏损量与实际漏损量的平均绝对百分比误差εmape小于3%,多点漏损量的εmape值均小于5.22%,且模拟定位节点与实际漏损点的拓扑距离绝大部分稳定在2以内。基于PSO-GA的漏损预测模型可有效地实现漏损定位与漏损程度的同步检测,并识别出多个近似节点,为检漏工作提供技术参考。 展开更多
关键词 供水管网 PSO-ga算法 漏损定位 EPANET
在线阅读 下载PDF
基于ARIMA与GGACO算法的ETL任务调度机制研究
6
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
7
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
A^(*)与NSGA-II融合的船舶气象航线多目标规划方法
8
作者 李元奎 索基源 +3 位作者 于东冶 张新宇 杨放 杨雪锋 《中国舰船研究》 北大核心 2025年第3期288-295,共8页
[目的]面向我国智能航运和气象导航国产化的发展要求,提出一种基于A^(*)与非支配排序遗传算法(NSGA-II)融合的船舶多目标航线规划方法,以适应复杂多样的远洋航行任务。[方法]通过将A^(*)算法引入至NSGA-II中引导搜索方向加快算法收敛速... [目的]面向我国智能航运和气象导航国产化的发展要求,提出一种基于A^(*)与非支配排序遗传算法(NSGA-II)融合的船舶多目标航线规划方法,以适应复杂多样的远洋航行任务。[方法]通过将A^(*)算法引入至NSGA-II中引导搜索方向加快算法收敛速度,然后通过构建环境数据模型和目标函数,采用跨太平洋航线对模型和算法进行仿真验证。[结果]仿真结果表明:设计的模型和算法可求解得到分布均匀、多样化的Pareto最优航线解集,所有航线均可以顺利躲避大风浪区域,且可根据决策者需求选择船舶最适航线。[结论]所提方法可用于多约束条件下的船舶远洋航线优化,求解符合航次目标的航线,从而降低营运成本、提高航运效率,对船舶气象导航和未来船舶智能航行具有一定的支撑作用。 展开更多
关键词 气象航线 多目标优化 A^(*)算法 NSga-II 智能航行 遗传算法
在线阅读 下载PDF
基于NSGA-Ⅱ算法的直流传导电磁泵多目标优化
9
作者 陈观慈 杨进 +2 位作者 张文斌 杨照林 陈永华 《材料导报》 北大核心 2025年第9期194-200,共7页
高集成度芯片和电子设备的热障问题已成为制约其集约化发展的瓶颈之一,利用直流传导电磁泵(DC-EMP)驱动液态金属进行传热与散热可以有效解决水冷系统沸点低、热导率低且易发生沸腾相变的问题。为提高DC-EMP的驱动效率,本工作建立了Krig... 高集成度芯片和电子设备的热障问题已成为制约其集约化发展的瓶颈之一,利用直流传导电磁泵(DC-EMP)驱动液态金属进行传热与散热可以有效解决水冷系统沸点低、热导率低且易发生沸腾相变的问题。为提高DC-EMP的驱动效率,本工作建立了Kriging代理模型,以作用区长度L、流道宽度W、流道高度H和输入电流I作为设计变量,压力P和驱动效率η为目标函数,采用NSGA-Ⅱ算法和TOPSIS决策法进行多目标优化,并对初始方案和优化结果进行外特性试验。结果表明,数值模拟与试验结果基本吻合;优化后,DC-EMP在设计工况下的压力和效率均有所提高,相较于初始方案分别提升了32.72%和8.85%;优化后泵内平均磁感应强度增大了约36.58%,分布不均匀性降低了19.36%,流道内流体相对速度分布更均匀,削弱了磁流体动力学(Magnetohydrodynamic,MHD)效应对液态金属流动的影响;基于优化结果,在流道内安装与流速方向平行的绝缘板可以有效减小电流在作用区端部的扩散效应,提高作用区内的有效电流。 展开更多
关键词 液态金属 直流传导电磁泵 KRIGING模型 遗传算法
在线阅读 下载PDF
改进SLP和GA在车间布局优化设计中的应用
10
作者 孙洪华 孙伟 《机械设计与制造》 北大核心 2025年第7期155-158,共4页
为解决SLP算法的局限性,提出改进的SLP算法模型。该模型包括两个部分:首先建立物料搬运成本最小的目标函数,解决了传统SLP算法中物流等级划分的主观性;然后根据模糊判断矩阵求出影响作业单位相互关系的多因素的权重,建立了多因素影响的... 为解决SLP算法的局限性,提出改进的SLP算法模型。该模型包括两个部分:首先建立物料搬运成本最小的目标函数,解决了传统SLP算法中物流等级划分的主观性;然后根据模糊判断矩阵求出影响作业单位相互关系的多因素的权重,建立了多因素影响的作业单位相互关系最大化的目标函数,解决了单因素影响的片面性。最后,应用遗传算法完成改进SLP算法的案例分析,结果表明:改进后SLP算法求解的车间布局可快速实现布局的优化设计,验证了改进SLP算法的可行性和有效性。 展开更多
关键词 车间布局 改进SLP算法 遗传算法
在线阅读 下载PDF
基于改进IGA的多品种变批量智能车间调度
11
作者 刘晋飞 刘乙涵 +1 位作者 陈明 黄华 《现代制造工程》 北大核心 2025年第4期1-10,共10页
针对多品种、变批量的高复杂度智能制造场景,频繁更换刀具、夹具及工装等情况造成的实际生产调度和理论生产调度脱节的问题,定义了两个参量,即机器准备时间(Machine Preparation Duration,MPD)和机器加工系数(Machine Processing Coeffi... 针对多品种、变批量的高复杂度智能制造场景,频繁更换刀具、夹具及工装等情况造成的实际生产调度和理论生产调度脱节的问题,定义了两个参量,即机器准备时间(Machine Preparation Duration,MPD)和机器加工系数(Machine Processing Coefficient,MPC),以最小化最大完工时间、机器总时间负荷和机器总准备时间为目标函数,建立了引入MPC参数的多品种、变批量智能车间调度数学模型;设计了融合非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-Ⅱ,NSGA-Ⅱ)和免疫遗传算法(Immune Genetic Algorithm,IGA)的非支配免疫遗传算法(Non-dominated Sorting Immune Genetic Algorithm-Ⅱ,NSIGA-Ⅱ)来求解此类问题。该算法采用多种方式进行初始化,提出了一种综合考虑非支配排序和目标函数值大小的得分策略来筛选优秀个体,同时为了提高种群的多样性,引入种群分层和自适应交叉突变的策略。最后,通过多组对比实验验证了该算法的有效性以及在探索最优解时具有稳定性好、解质量高等优点。 展开更多
关键词 机器准备时间 非支配排序算法 免疫遗传算法 智能车间调度
在线阅读 下载PDF
基于辅助变量和GARBF神经网络的黄河流域土壤镉空间分布预测
12
作者 张成才 郑文豪 +3 位作者 闫亚宁 孙雨田 刘威 王永辉 《土壤》 北大核心 2025年第2期423-429,共7页
为了准确掌握黄河流域土壤镉的空间分布,以环境因子和土壤理化因子的不同组合作为辅助变量,利用遗传算法(GA)优化径向基函数(RBF)神经网络对黄河流域土壤镉的空间分布进行了预测,并与回归克里格、RBF神经网络预测精度进行了对比,探究了... 为了准确掌握黄河流域土壤镉的空间分布,以环境因子和土壤理化因子的不同组合作为辅助变量,利用遗传算法(GA)优化径向基函数(RBF)神经网络对黄河流域土壤镉的空间分布进行了预测,并与回归克里格、RBF神经网络预测精度进行了对比,探究了土壤理化因子和遗传算法对神经网络模型预测精度的影响。结果表明:(1)加入土壤理化因子(有机质含量、p H、CEC)可以提高神经网络模型的预测精度,基于环境因子和土壤理化因子的GARBF神经网络模型均方根误差(RMSE)、平均绝对误差(MAE)、平均相对误差(MRE)较仅基于环境因子的GARBF神经网络模型分别减小0.058 mg/kg、0.033 mg/kg、4.4个百分点;(2)遗传算法可以提高神经网络模型的预测精度,基于环境因子和土壤理化因子的GARBF神经网络模型的RMSE、MAE、MRE较基于环境因子和土壤理化数据的RBF神经网络模型分别减小0.009mg/kg、0.005mg/kg、0.6个百分点;(3)同时加入环境因子和土壤理化因子并使用遗传算法对神经网络模型进行优化得到的预测结果最优,基于环境因子和土壤理化因子的GARBF神经网络模型能用于黄河流域土壤镉的空间分布预测研究。 展开更多
关键词 土壤理化因子 遗传算法 神经网络 辅助变量 空间插值
在线阅读 下载PDF
GA-2D-VMD联合FNLM的医学超声图像去噪方法研究
13
作者 闫洪波 那毅然 +1 位作者 沈雅楠 徐洋 《机械设计与制造》 北大核心 2025年第2期375-379,384,共6页
医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进... 医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进行自适应寻优,接着采用优化2D-VMD分解噪声图像,并借助相关系数筛选有效分量,然后使用FNLM滤波去噪,最后将去噪后的子模态重构完成去噪。实验结果证明,该方法具有优秀的去噪效果和保留图像边缘细节信息的能力,客观评价指标亦有明显的提升。 展开更多
关键词 斑点噪声 遗传算法 二维变分模态分解 参数优化 快速非局部均值 图像去噪
在线阅读 下载PDF
基于自适应分组GA-FLC的电池组均衡控制策略研究
14
作者 吴铁洲 杜亨昱 刘珉诺 《电源技术》 北大核心 2025年第7期1482-1492,共11页
在实际应用中将多个电池单体通过串并联成组使用会存在电池不一致性问题,影响电池组使用寿命。集中式电感均衡是广泛使用的均衡技术之一,但传统极值法集中式电感电路在均衡过程中存在频繁切换均衡目标导致开关频繁通断、速度慢的问题。... 在实际应用中将多个电池单体通过串并联成组使用会存在电池不一致性问题,影响电池组使用寿命。集中式电感均衡是广泛使用的均衡技术之一,但传统极值法集中式电感电路在均衡过程中存在频繁切换均衡目标导致开关频繁通断、速度慢的问题。在集中式电感均衡拓扑结构的基础上,提出了一种基于自适应分组GA-FLC策略的集中式电感均衡电路控制方法,在均衡开启前,使用基于滑动窗口法的自适应分组策略对相邻且SOC值接近的电池合并成组,再结合遗传算法对自适应分组后的电池组进行最优路径选择,利用FLC控制均衡电流大小。以6个电池串联的电池组为例,设计静置、充电、放电三种工况下的电池组均衡实验,结果表明,与对极值法、自适应分组GA法均衡相比,提出的均衡策略显著降低了开关的通断次数,相较极值法、自适应分组GA法分别提升69%、30%的均衡速度,有助于电池组的整体性能提升和延长使用寿命。 展开更多
关键词 主动均衡 自适应分组 遗传算法 模糊逻辑控制 均衡速度
在线阅读 下载PDF
基于改进NSGA-Ⅲ的多Delta机器人协作食品动态分拣研究
15
作者 郭凌岑 王海晖 +1 位作者 赵小霏 王思璐 《食品与机械》 北大核心 2025年第7期72-77,共6页
[目的]探索提升多Delta机器人协作的食品动态分拣准确率和效率的方法。[方法]基于多Delta机器人食品自动化生产线,提出一种结合动态目标跟踪、多机器人任务分类和机器人轨迹规划的多Delta机器人协作食品动态分拣方法。通过精确计算传送... [目的]探索提升多Delta机器人协作的食品动态分拣准确率和效率的方法。[方法]基于多Delta机器人食品自动化生产线,提出一种结合动态目标跟踪、多机器人任务分类和机器人轨迹规划的多Delta机器人协作食品动态分拣方法。通过精确计算传送带移动距离,并结合相机实时采集的目标坐标信息,实现对食品动态位置的精准捕捉。通过集中控制分配策略,根据各机器人的工作状态与任务优先级,科学合理地进行任务分配。通过改进的第三代非支配排序遗传算法和5次非均匀有理B样条曲线实现多目标综合最优轨迹规划。并通过搭建试验平台对所提方法的性能进行全面验证。[结果]试验所提多Delta机器人协作分拣方法具有优异的性能。在实际运行中,该方法实现了食品分拣的高精度、高效率与高稳定性,分拣成功率为100%,分拣平均时间为0.231 s,平均运行冲击为4.45×10^(3)(°)/s^(3),平均运行能耗为2.45×10^(2)(°)/s^(2),有效满足了食品生产对高效、稳定作业的需求。[结论]通过优化现有动态分拣方法并结合多机器人可以实现食品的准确、高效和稳定分拣。 展开更多
关键词 食品自动化生产线 多Delta机器人 动态目标跟踪 第三代非支配排序遗传算法 非均匀有理B样条
在线阅读 下载PDF
基于GA-PSO优化的汽车轨迹跟踪和稳定性协同控制
16
作者 田韶鹏 吴思沛 王龙 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期10-19,共10页
针对恶劣工况下汽车轨迹跟踪控制的精度和稳定性问题,提出一种基于分层控制策略的解决方案。上层轨迹跟踪控制器和下层直接横摆力矩控制器分别基于模型预测控制(model predictive control,MPC)和滑模控制(sliding mode control,SMC)实现... 针对恶劣工况下汽车轨迹跟踪控制的精度和稳定性问题,提出一种基于分层控制策略的解决方案。上层轨迹跟踪控制器和下层直接横摆力矩控制器分别基于模型预测控制(model predictive control,MPC)和滑模控制(sliding mode control,SMC)实现;通过遗传粒子群优化算法(GA-PSO)优化不同车速和路面附着系数下的控制器参数,得到适用于不同驾驶条件的最佳控制器时域和控制参数;基于此设计协同控制器,进一步改善了轨迹跟踪的准确性和稳定性。为验证策略有效性,在CarSim-Simulink联合仿真平台进行仿真实验。仿真结果表明:所提出控制策略能显著提升追踪效果和横摆稳定性,平均横向误差分别减少89.9%、46.4%和43.3%。 展开更多
关键词 智能车辆 轨迹跟踪 稳定性控制 模型预测控制 滑模控制 遗传粒子群算法
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
17
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于改进NSGA-Ⅱ的煤矿井下智能无轨辅助调度路径优化方法研究 被引量:2
18
作者 贾纯纯 马超 +2 位作者 张亚邦 易贝贝 王海波 《中国矿业》 北大核心 2025年第5期137-143,共7页
针对现有煤矿井下智能无轨辅助运输系统调度及路径规划效率低、考虑现实约束不足的问题,提出了一种基于改进NSGA-II的调度运输路径规划方法。以最小运输成本、最小电力机车机器人总等待时间、最小煤矿运输期望偏差为目标函数,最小卸货... 针对现有煤矿井下智能无轨辅助运输系统调度及路径规划效率低、考虑现实约束不足的问题,提出了一种基于改进NSGA-II的调度运输路径规划方法。以最小运输成本、最小电力机车机器人总等待时间、最小煤矿运输期望偏差为目标函数,最小卸货量、装货点运出总容量、装货次数、卸货点的最大卸货容量等约束条件建立煤矿井下智能无轨辅助运输系统多目标优化函数。提出了一种改进NSGA-II的多目标优化算法,使用Levy飞行、随机游走、自适应权重等策略分别提高算法的全局和局部搜索能力,加快算法收敛速度。模拟场景实验表明,与无优化方案相比,所提改进NSGA-II优化后的平衡方案使运输成本降低约19%,排队等待时间缩短约56%,最小煤矿运输期望偏差下降约40.5%。实验结果验证了所提改进NSGA-II算法优化结果的有效性和实用性,可为煤矿井下生产管理提供多种优化选择方案,具有广阔的应用前景。 展开更多
关键词 煤矿 智能无轨辅助运输 调度 路径优化 非支配排序遗传算法
在线阅读 下载PDF
基于改进RRT与GA的多目标路径规划——以无人机林区巡检为例 被引量:2
19
作者 张彪 康峰 许舒婷 《北京林业大学学报》 北大核心 2025年第4期129-141,共13页
【目的】为解决无人机在人工林区巡检任务(如病虫害监测、火灾预防等)中的路径规划问题,即求解巡检点的最优遍历序列以及生成避障飞行轨迹,本文通过融合改进快速随机扩展树(RRT)算法和遗传算法(GA),提出一种多目标路径规划算法。【方法... 【目的】为解决无人机在人工林区巡检任务(如病虫害监测、火灾预防等)中的路径规划问题,即求解巡检点的最优遍历序列以及生成避障飞行轨迹,本文通过融合改进快速随机扩展树(RRT)算法和遗传算法(GA),提出一种多目标路径规划算法。【方法】首先改进传统GA,使其能够在三维空间中遍历所有巡检点并求解最优序列。其次,依据该序列进行路径搜索,改进RRT算法的随机采样原理,通过靶心和绕树策略实现避障效果,并采用连续选择父节点策略,取消因避障产生的多余转折点。最后,通过3次B样条曲线优化,生成最终路径。【结果】仿真结果表明,本算法能够在复杂林区环境中遍历所有巡检点,并在短时间内规划出高质量、无碰撞的路径。与粒子群算法(PSO)、蚁群算法(ACO)和RRT算法相比,当巡检点从3个增加到9个时,PSO、ACO、RRT算法搜索时间分别增加了221.77%、332.42%、184.78%,而本算法仅增加了102.35%。在9个巡检点的复杂环境中,本算法的路径耗散分别比PSO、ACO和RRT算法降低了14.46%、30.28%、24.76%,且路径质量显著提高,消除了路径交叉重合现象。此外,通过ROS平台,利用无人机在林区点云上进行模拟飞行并验证成功,证明本算法适用于林区巡检的多目标路径规划。【结论】针对人工林区无人机巡检任务中的飞行路线规划问题,本文通过改进RRT与GA,成功规划出一条遍历所有巡检点且避开林区障碍物的无碰撞路径。相较于PSO、ACO和RRT算法,本算法在路径质量、路径耗散和搜索时间上均表现出显著优势。 展开更多
关键词 多目标优化 路径规划 快速随机扩展树(RRT) 遗传算法(ga) 无人机 粒子群算法(PSO) 蚁群算法(ACO)
在线阅读 下载PDF
基于PCA-GA算法的贵州省水库标准化管理因子研究 被引量:1
20
作者 倪康 古今用 申乾坤 《水利水电技术(中英文)》 北大核心 2025年第S1期569-576,共8页
依赖专家对标对表的创建工作中,存在专家在扣分区间内自由把控扣分程度的现象,针对所造成的因子重要性、所占总分比例、扣分区间一致,但其差异化不一致的问题,利用主成分分析法(PCA)以离散度作为表征指标,重构《贵州省水库标准化管理评... 依赖专家对标对表的创建工作中,存在专家在扣分区间内自由把控扣分程度的现象,针对所造成的因子重要性、所占总分比例、扣分区间一致,但其差异化不一致的问题,利用主成分分析法(PCA)以离散度作为表征指标,重构《贵州省水库标准化管理评价标准》(简写为《评价标准》),建立特征矩阵作为输入变量,利用GA遗传算法改进BP神经网络进行拟合验证。结果表明,《评价标准》因子离散程度越高,越能代表创建实际情况;GA算法通过建立解释目标与解释适应度核函数之间的映射关系,进一步提升了BP神经网络的泛化能力和精准度,改进后的GA-BP神经网络算法模型的拟合准确率达98.78%;重构后的《评价标准》拟合R2高达0.953,较重构前提升了0.107,有着更好的拟合精度。目前从因子离散度角度出发对水利工程达标创建标准解构、重组的研究相对较少,研究结论能够较好的辅助贵州省水库标准化管理创建、后续《评价标准》的修编等工作。 展开更多
关键词 水库标准化 主成分分析法 离散度 遗传算法 重构标准
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部