A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover opera...A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm.展开更多
Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for dis...Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.展开更多
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves...Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.展开更多
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,...Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.展开更多
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er...Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.展开更多
Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture ...Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively.展开更多
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro...Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to thi...Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to this problem.However,in order to apply the approach,a state-space flight delay model needs to be established to represent the relationship among system states,as well as the relationship between system states and input/output variables.Based on the analysis of delay event sequence in a single flight,a state-space mixture model is established and input variables in the model are studied.Case study is also carried out on historical flight delay data.In addition,the genetic expectation-maximization(EM)algorithm is used to obtain the global optimal estimates of parameters in the mixture model,and results fit the historical data.At last,the model is validated in Kolmogorov-Smirnov tests.Results show that the model has reasonable goodness of fitting the data,and the search performance of traditional EM algorithm can be improved by using the genetic algorithm.展开更多
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ...To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a mu...An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a multi-extrema optimization problem such that finding the fittest solution from a set of potential disparity maps. Among a wide variety of optimization techniques, GAs are proven to be potentially effective methods for the global optimization problems with large search space. With this idea, each disparity map is viewed as an individual and the disparity values are encoded as chromosomes, so each individual has lots of chromosomes in the approach. Then, several matching constraints are formulated into an objective function, and GAs are used to search the global optimal solution for the problem. Furthermore, the coarse-to-fine strategy has been embedded in the approach so as to reduce the matching ambiguity and the time consumption. Finally, experimental results on synthetic and real images show the performance of the work.展开更多
A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding wh...A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding whether to thrust or coast.GA is used to achieve the global time-optimal orbit transfer.The trajectory optimization problem is transformed into the constraint parameter optimization problem,thus the nonlinear two-point boundary value problem is avoided.The refined Q-law method integrated with the fuzzy logic control is adopted for the end course,the vibration is avoided and the high precision is achieved.The numerical simulation of satellite orbit transfer is implemented.Results show that the new method can achieve the time-optimal orbit transfer and the low energy consumption,thus improving the transfer precision.展开更多
An intercept optimization approach of the exo-atmospheric interceptor is proposed by the middle and terminal flight stages. Firstly, the dynamic models of the exo-atmospheric interceptor in middle and terminal flight ...An intercept optimization approach of the exo-atmospheric interceptor is proposed by the middle and terminal flight stages. Firstly, the dynamic models of the exo-atmospheric interceptor in middle and terminal flight stages are constructed ; and the velocity gain midcourse guidance law and the robust variable structure terminal guidance law are designed. Then the optimization parameters and their constraints affecting the intercept performance are determined. The genetic algorithm (GA) with the advantage of global optimization is used to deal with the intercept optimization problem. The performance index of the optimization is composed of the minimum fuel consumption and the minimum miss distance of the interception. Finally, optimization results of GA and the complex algorithm (CA) are compared. Simulation results show that compared with the traditional opti- mization method, GA can converge to the global optimization better in solving the complex constrained nonlinear combinatorial optimization of the exo-atmospheric interceptor, and reduce the fuel consumption and the miss distance.展开更多
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv...In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.展开更多
The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda arra...The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.展开更多
Aim To determine the global optimal solution for a mine ventilation network under given network topology and airway characteristics. Methods\ The genetic algorithm was used to find the global optimal solution of the ...Aim To determine the global optimal solution for a mine ventilation network under given network topology and airway characteristics. Methods\ The genetic algorithm was used to find the global optimal solution of the network. Results\ A modified genetic algorithm is presented with its characteristics and principle. Instead of working on the conventional bit by bit operation, both the crossover and mutation operators are handled in real values by the proposed algorithms. To prevent the system from turning into a premature problem, the elitists from two groups of possible solutions are selected to reproduce the new populations. Conclusion\ The simulation results show that the method outperforms the conventional nonlinear programming approach whether from the viewpoint of the number of iterations required to find the optimum solutions or from the final solutions obtained.展开更多
Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh...Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.展开更多
文摘A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm.
文摘Hidden Maxkov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.
基金support from the National Science Foundation of China(Grant Nos.62075078 and 62135004)the Knowledge Innovation Program of Wuhan-Shuguang Project(Grant No.2022010801020095).
文摘Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics.
基金supported by the National Natural Science Foundation of China (No.42172343)。
文摘Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
基金funded by Shanghai Natural Science Foundation(No.12ZR1414700)。
文摘Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.
基金Supported by the Natural Science Foundation of Jiangxi Province(2009GZC0104)the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ10521)~~
文摘Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively.
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
文摘Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
基金Supported by the High Technology Research and Development Programme of China(2006AA12A106)~~
文摘Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to this problem.However,in order to apply the approach,a state-space flight delay model needs to be established to represent the relationship among system states,as well as the relationship between system states and input/output variables.Based on the analysis of delay event sequence in a single flight,a state-space mixture model is established and input variables in the model are studied.Case study is also carried out on historical flight delay data.In addition,the genetic expectation-maximization(EM)algorithm is used to obtain the global optimal estimates of parameters in the mixture model,and results fit the historical data.At last,the model is validated in Kolmogorov-Smirnov tests.Results show that the model has reasonable goodness of fitting the data,and the search performance of traditional EM algorithm can be improved by using the genetic algorithm.
文摘To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
文摘An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a multi-extrema optimization problem such that finding the fittest solution from a set of potential disparity maps. Among a wide variety of optimization techniques, GAs are proven to be potentially effective methods for the global optimization problems with large search space. With this idea, each disparity map is viewed as an individual and the disparity values are encoded as chromosomes, so each individual has lots of chromosomes in the approach. Then, several matching constraints are formulated into an objective function, and GAs are used to search the global optimal solution for the problem. Furthermore, the coarse-to-fine strategy has been embedded in the approach so as to reduce the matching ambiguity and the time consumption. Finally, experimental results on synthetic and real images show the performance of the work.
基金Supported by the Key Project of Natural Science Foundation of Jiangsu Province(BK2010072)~~
文摘A new orbit transfer method is presented by combining the genetic algorithm(GA)with the refined Q-law method.Considering the energy consumption,the relative thrust efficiency is introduced as a threshold deciding whether to thrust or coast.GA is used to achieve the global time-optimal orbit transfer.The trajectory optimization problem is transformed into the constraint parameter optimization problem,thus the nonlinear two-point boundary value problem is avoided.The refined Q-law method integrated with the fuzzy logic control is adopted for the end course,the vibration is avoided and the high precision is achieved.The numerical simulation of satellite orbit transfer is implemented.Results show that the new method can achieve the time-optimal orbit transfer and the low energy consumption,thus improving the transfer precision.
文摘An intercept optimization approach of the exo-atmospheric interceptor is proposed by the middle and terminal flight stages. Firstly, the dynamic models of the exo-atmospheric interceptor in middle and terminal flight stages are constructed ; and the velocity gain midcourse guidance law and the robust variable structure terminal guidance law are designed. Then the optimization parameters and their constraints affecting the intercept performance are determined. The genetic algorithm (GA) with the advantage of global optimization is used to deal with the intercept optimization problem. The performance index of the optimization is composed of the minimum fuel consumption and the minimum miss distance of the interception. Finally, optimization results of GA and the complex algorithm (CA) are compared. Simulation results show that compared with the traditional opti- mization method, GA can converge to the global optimization better in solving the complex constrained nonlinear combinatorial optimization of the exo-atmospheric interceptor, and reduce the fuel consumption and the miss distance.
文摘In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload.
文摘The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields.
文摘Aim To determine the global optimal solution for a mine ventilation network under given network topology and airway characteristics. Methods\ The genetic algorithm was used to find the global optimal solution of the network. Results\ A modified genetic algorithm is presented with its characteristics and principle. Instead of working on the conventional bit by bit operation, both the crossover and mutation operators are handled in real values by the proposed algorithms. To prevent the system from turning into a premature problem, the elitists from two groups of possible solutions are selected to reproduce the new populations. Conclusion\ The simulation results show that the method outperforms the conventional nonlinear programming approach whether from the viewpoint of the number of iterations required to find the optimum solutions or from the final solutions obtained.
文摘Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.