期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solving open vehicle problem with time window by hybrid column generation algorithm 被引量:1
1
作者 YU Naikang QIAN Bin +2 位作者 HU Rong CHEN Yuwang WANG Ling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期997-1009,共13页
This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the ... This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time. 展开更多
关键词 open vehicle routing problem with time window(OVRPTW) hybrid column generation algorithm(HCGA) mixed integer programming label setting algorithm
在线阅读 下载PDF
MCL4DGA:基于多视角对比学习的DGA域名检测方法
2
作者 王继虎 刘子雁 +2 位作者 倪金超 孔凡玉 史玉良 《软件学报》 EI CSCD 北大核心 2024年第11期5228-5248,共21页
在网络安全领域,由域名生成算法(domain generation algorithm,DGA)产生的虚假域名被称为DGA域名.与正常域名类似的是,DGA域名通常是字母或数字的随机组合,这使得DGA域名具有较强的伪装性.网络黑客利用DGA域名的伪装性实施网络攻击,以... 在网络安全领域,由域名生成算法(domain generation algorithm,DGA)产生的虚假域名被称为DGA域名.与正常域名类似的是,DGA域名通常是字母或数字的随机组合,这使得DGA域名具有较强的伪装性.网络黑客利用DGA域名的伪装性实施网络攻击,以达到绕过安全检测的目的.如何有效地对DGA域名进行检测,进而维护信息系统安全,成为当前的研究热点.传统的统计机器学习检测方法需要人工构建域名字符特征集合.然而,人工或者半自动化方式构建的域名特征存在质量参差不齐的情况,进而影响检测的准确性.鉴于深度神经网络强大的特征自动化抽取和表示能力,提出一种基于多视角对比学习的DGA域名检测方法(MCL4DGA).与现有方法不同的是,所提方法结合了注意力神经网络、卷积神经网络和循环神经网络,能够有效地捕获域名字符序列中的全局、局部和双向多视角特征依赖关系.除此之外,通过多视角表示向量之间的对比学习而产生的自监督信号,能够增强模型的学习能力,进而提高检测的准确性.通过在真实数据集上与当前DGA域名检测方法实验对比验证了所提方法的有效性. 展开更多
关键词 网络安全 DGA(domain generation algorithm)域名检测 深度神经网络 对比学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部