Testability design is an effective way to realize the fault detection and isolation.Its important step is to determine testability figures of merits(TFOM).Firstly,some influence factors for TFOMs are analyzed,such as ...Testability design is an effective way to realize the fault detection and isolation.Its important step is to determine testability figures of merits(TFOM).Firstly,some influence factors for TFOMs are analyzed,such as the processes of system operation,maintenance and support,fault detection and isolation and so on.Secondly,a testability requirement analysis model is built based on generalized stochastic Petri net(GSPN).Then,the system's reachable states are analyzed based on the model,a Markov chain isomorphic with Petri net is constructed,a state transition matrix is created and the system's steady state probability is obtained.The relationship between the steady state availability and testability parameters can be revealed and reasoned.Finally,an example shows that the proposed method can determine TFOM,such as fault detection rate and fault isolation rate,effectively and reasonably.展开更多
The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertain...The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.展开更多
Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the over...Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the overlapping path issue of the multinomial logit(MNL)model that are involved in the traffic assignment process,this paper proposes a cumulative prospect value(CPV)-based generalized nested logit(GNL)stochastic user equilibrium(SUE)model.The proposed model uses CPV to replace the utility value as the path performance within the GNL model framework.An equivalent mathematical model is provided for the proposed CPV-based GNL SUE model,which is solved by the method of successive averages(MSA).The existence and equivalence of the solution are also proved for the equivalent model.To demonstrate the performance of the proposed CPV-based GNL SUE model,three road networks are selected in the empirical test.The results show that the proposed model can jointly deal with the perfectly rational issue and the overlapping path issue,and additionally,the proposed model is shown to be applicable for large road networks.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
因大量采用分布式、综合化、模块化方案,复杂电子系统极易出现共因故障和故障并发等新问题,传统测试性参数确定方法难以解决。针对这一问题,提出一种基于着色广义随机Petri网(colored generalized stochastic Petri nets,CGSPN)的复杂...因大量采用分布式、综合化、模块化方案,复杂电子系统极易出现共因故障和故障并发等新问题,传统测试性参数确定方法难以解决。针对这一问题,提出一种基于着色广义随机Petri网(colored generalized stochastic Petri nets,CGSPN)的复杂电子系统测试性参数确定新方法。首先,综合需求信息、约束边界和维修保障等要求,建立电子系统两层级CGSPN模型,引入着色,实现不同模块各种状态的实时追踪和故障并发处理,通过广义随机处理共因故障的随机不确定性;然后,利用着色和可用度探索一种带有冗余设计的测试性参数处理手段,丰富测试性体系;最后,构建一种不同模块、各种状态融合的并行分析技术,统一系统层和模块层之间的状态转移关系,避免分阶段串行处理和等效替换。以通信导航识别系统为例进行实例分析,所提方法比传统方法具有更好的可用性和有效性。展开更多
文摘Testability design is an effective way to realize the fault detection and isolation.Its important step is to determine testability figures of merits(TFOM).Firstly,some influence factors for TFOMs are analyzed,such as the processes of system operation,maintenance and support,fault detection and isolation and so on.Secondly,a testability requirement analysis model is built based on generalized stochastic Petri net(GSPN).Then,the system's reachable states are analyzed based on the model,a Markov chain isomorphic with Petri net is constructed,a state transition matrix is created and the system's steady state probability is obtained.The relationship between the steady state availability and testability parameters can be revealed and reasoned.Finally,an example shows that the proposed method can determine TFOM,such as fault detection rate and fault isolation rate,effectively and reasonably.
基金Project(BX20180268)supported by National Postdoctoral Program for Innovative Talent,ChinaProject(300102228101)supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(51578150)supported by the National Natural Science Foundation of ChinaProject(18YJCZH130)supported by the Humanities and Social Science Project of Chinese Ministry of Education
文摘The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.
基金Project(KYLX16_0271)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
文摘Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the overlapping path issue of the multinomial logit(MNL)model that are involved in the traffic assignment process,this paper proposes a cumulative prospect value(CPV)-based generalized nested logit(GNL)stochastic user equilibrium(SUE)model.The proposed model uses CPV to replace the utility value as the path performance within the GNL model framework.An equivalent mathematical model is provided for the proposed CPV-based GNL SUE model,which is solved by the method of successive averages(MSA).The existence and equivalence of the solution are also proved for the equivalent model.To demonstrate the performance of the proposed CPV-based GNL SUE model,three road networks are selected in the empirical test.The results show that the proposed model can jointly deal with the perfectly rational issue and the overlapping path issue,and additionally,the proposed model is shown to be applicable for large road networks.
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
文摘因大量采用分布式、综合化、模块化方案,复杂电子系统极易出现共因故障和故障并发等新问题,传统测试性参数确定方法难以解决。针对这一问题,提出一种基于着色广义随机Petri网(colored generalized stochastic Petri nets,CGSPN)的复杂电子系统测试性参数确定新方法。首先,综合需求信息、约束边界和维修保障等要求,建立电子系统两层级CGSPN模型,引入着色,实现不同模块各种状态的实时追踪和故障并发处理,通过广义随机处理共因故障的随机不确定性;然后,利用着色和可用度探索一种带有冗余设计的测试性参数处理手段,丰富测试性体系;最后,构建一种不同模块、各种状态融合的并行分析技术,统一系统层和模块层之间的状态转移关系,避免分阶段串行处理和等效替换。以通信导航识别系统为例进行实例分析,所提方法比传统方法具有更好的可用性和有效性。