A method that attempts to recover signal using generalized inverse theory is presented to obtain a good approximation of the signal in reconstruction space from its generalized samples. The proposed approaches differ ...A method that attempts to recover signal using generalized inverse theory is presented to obtain a good approximation of the signal in reconstruction space from its generalized samples. The proposed approaches differ with the assumptions on reconstruction space. If the reconstruction space satisfies one-to-one relationship between the samples and the reconstruction model, then we propose a method, which achieves consistent signal reconstruction. At the same time, when the number of samples is more than the number of reconstruction functions, the minimal-norm reconstruction signal can be obtained. Finally, it is demonstrated that the minimal-norm reconstruction can outperform consistent signal reconstruction in both theory and simulations for the problem.展开更多
文摘A method that attempts to recover signal using generalized inverse theory is presented to obtain a good approximation of the signal in reconstruction space from its generalized samples. The proposed approaches differ with the assumptions on reconstruction space. If the reconstruction space satisfies one-to-one relationship between the samples and the reconstruction model, then we propose a method, which achieves consistent signal reconstruction. At the same time, when the number of samples is more than the number of reconstruction functions, the minimal-norm reconstruction signal can be obtained. Finally, it is demonstrated that the minimal-norm reconstruction can outperform consistent signal reconstruction in both theory and simulations for the problem.