Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But th...Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But there are also many orthogonal arrays, especially mixed-level or asymmetrical which can not be obtained by the usual difference matrices. In order to construct these asymmetrical orthogonal arrays, a class of special matrices, so-called generalized difference matrices, were discovered by Zhang(1989, 1990, 1993) by the orthogonal decompositions of projective matrices. In this article, an interesting equivalent relationship between the orthogonal arrays and the generalized difference matrices is presented. As an application, a family of orthogonal arrays of run sizes 4p2, such as L36(6^13^42^10), are constructed.展开更多
On the assumption that random interruptions in the observation process are modelled by a sequence of independent Bernoulli random variables, this paper generalize the extended Kalman filtering (EKF), the unscented K...On the assumption that random interruptions in the observation process are modelled by a sequence of independent Bernoulli random variables, this paper generalize the extended Kalman filtering (EKF), the unscented Kalman filtering (UKF) and the Gaussian particle filtering (GPF) to the case in which there is a positive probability that the observation in each time consists of noise alone and does not contain the chaotic signal (These generalized novel algorithms are referred to as GEKF, GUKF and GGPF correspondingly in this paper). Using weights and network output of neural networks to constitute state equation and observation equation for chaotic time-series prediction to obtain the linear system state transition equation with continuous update scheme in an online fashion, and the prediction results of chaotic time series represented by the predicted observation value, these proposed novel algorithms are applied to the prediction of Mackey-Glass time-series with additive and multiplicative noises. Simulation results prove that the GGPF provides a relatively better prediction performance in comparison with GEKF and GUKF.展开更多
基金the National Science Foundations of China(10571045)the National Science Foundations of Henan Province(02243700510211063100)
文摘Nowadays orthogonal arrays play important roles in statistics, computer science, coding theory and cryptography. The usual difference matrices are essential for the construction of many mixed orthogonal arrays. But there are also many orthogonal arrays, especially mixed-level or asymmetrical which can not be obtained by the usual difference matrices. In order to construct these asymmetrical orthogonal arrays, a class of special matrices, so-called generalized difference matrices, were discovered by Zhang(1989, 1990, 1993) by the orthogonal decompositions of projective matrices. In this article, an interesting equivalent relationship between the orthogonal arrays and the generalized difference matrices is presented. As an application, a family of orthogonal arrays of run sizes 4p2, such as L36(6^13^42^10), are constructed.
基金supported by the National Natural Science Foundation of China (Grant No 60774067)the Natural Science Foundation of Fujian Province of China (Grant No 2006J0017)
文摘On the assumption that random interruptions in the observation process are modelled by a sequence of independent Bernoulli random variables, this paper generalize the extended Kalman filtering (EKF), the unscented Kalman filtering (UKF) and the Gaussian particle filtering (GPF) to the case in which there is a positive probability that the observation in each time consists of noise alone and does not contain the chaotic signal (These generalized novel algorithms are referred to as GEKF, GUKF and GGPF correspondingly in this paper). Using weights and network output of neural networks to constitute state equation and observation equation for chaotic time-series prediction to obtain the linear system state transition equation with continuous update scheme in an online fashion, and the prediction results of chaotic time series represented by the predicted observation value, these proposed novel algorithms are applied to the prediction of Mackey-Glass time-series with additive and multiplicative noises. Simulation results prove that the GGPF provides a relatively better prediction performance in comparison with GEKF and GUKF.