This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
根据2013—2016年南海两艘灯光罩网渔船的生产统计资料,结合卫星遥感获取的环境因子数据,运用广义可加模型(GAM)分析了南海春季鸢乌贼渔场分布及其与时空和环境因子的关系。结果表明:2013—2014年鸢乌贼单位捕捞努力量渔获量(CPUE,Catch...根据2013—2016年南海两艘灯光罩网渔船的生产统计资料,结合卫星遥感获取的环境因子数据,运用广义可加模型(GAM)分析了南海春季鸢乌贼渔场分布及其与时空和环境因子的关系。结果表明:2013—2014年鸢乌贼单位捕捞努力量渔获量(CPUE,Catch Per Unit Effort)呈增长趋势,而2015—2016年CPUE明显下降。2013—2015年鸢乌贼中心渔场主要分布在114°E—115°E,10°N—12°N区域,而2016年中心渔场向西偏移;GAM模型对CPUE的总偏差解释率为66.40%,其中经度、纬度、海表温度和叶绿素浓度4个因子与CPUE显著相关(P<0.05),影响因子按重要性排列,从大到小依次为:经度、纬度、叶绿素浓度和海表温度。而年份、月份和海表盐度对CPUE影响不显著(P>0.05)。鸢乌贼适宜海表温度为27℃~30℃,适宜叶绿素浓度为0.10~0.15 mg/m^(3)。展开更多
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.
文摘根据2013—2016年南海两艘灯光罩网渔船的生产统计资料,结合卫星遥感获取的环境因子数据,运用广义可加模型(GAM)分析了南海春季鸢乌贼渔场分布及其与时空和环境因子的关系。结果表明:2013—2014年鸢乌贼单位捕捞努力量渔获量(CPUE,Catch Per Unit Effort)呈增长趋势,而2015—2016年CPUE明显下降。2013—2015年鸢乌贼中心渔场主要分布在114°E—115°E,10°N—12°N区域,而2016年中心渔场向西偏移;GAM模型对CPUE的总偏差解释率为66.40%,其中经度、纬度、海表温度和叶绿素浓度4个因子与CPUE显著相关(P<0.05),影响因子按重要性排列,从大到小依次为:经度、纬度、叶绿素浓度和海表温度。而年份、月份和海表盐度对CPUE影响不显著(P>0.05)。鸢乌贼适宜海表温度为27℃~30℃,适宜叶绿素浓度为0.10~0.15 mg/m^(3)。