期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network
1
作者 LIU Bei MENG Fanjiang LI Yong LIULiyan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2008年第2期61-64,共4页
The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorith... The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorithm for controlling the gene expression regulatory network of the whole cell was designed using Bayesian network which provides an effective aided analysis for gene regulatory network. 展开更多
关键词 gene regulatory network Bayesian network CPT DAG
在线阅读 下载PDF
Revolutionary entrapment model of uniformly distributed swarm robots in morphogenetic formation
2
作者 Chen Wang Zhaohui Shi +3 位作者 Minqiang Gu Weicheng Luo Xiaomin Zhu Zhun Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期496-509,共14页
This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regul... This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regulatory network method,the robots can generate entrapping patterns according to the environmental input,including the positions of the targets and obstacles.Next,an adaptive decision mechanism is proposed,allowing each robot to choose the most well-adapted capture point on the pattern,based on its environment.The robots employ an improved Vicsek-model to maneuver to the planned capture point smoothly,without colliding with other robots or obstacles.The proposed decision mechanism,combined with the improved Vicsek-model,can form a uniform entrapment shape and create a revolving effect around targets while entrapping them.This study also enables swarm robots,with an adaptive pattern formation,to entrap multiple targets in complex environments.Swarm robots can be deployed in the military field of unmanned aerial vehicles’(UAVs)entrapping multiple targets.Simulation experiments demonstrate the feasibility and superiority of the proposed gene regulatory network method. 展开更多
关键词 Swarm intelligence Revolutionary entrapment FLOCKING ROBOTS gene regulatory network Vicsek-model Entrapping multiple targets
在线阅读 下载PDF
SUNDER:Self-organized grouping and entrapping method for swarms in multitarget environments
3
作者 Yutong Yuan Zhun Fan +5 位作者 Xiaomin Zhu Li Ma Ji Ouyang Weidong Bao Ji Wang Zhaojun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期68-83,共16页
For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory n... For swarm robots moving in a harsh or uncharted outdoor environment without GPS guidance and global communication,algorithms that rely on global-based information are infeasible.Typically,traditional gene regulatory networks(GRNs)that achieve superior performance in forming trapping pattern towards targets require accurate global positional information to guide swarm robots.This article presents a gene regulatory network with Self-organized grouping and entrapping method for swarms(SUNDER-GRN)to achieve adequate trapping performance with a large-scale swarm in a confined multitarget environment with access to only local information.A hierarchical self-organized grouping method(HSG)is proposed to structure subswarms in a distributed way.In addition,a modified distributed controller,with a relative coordinate system that is established to relieve the need for global information,is leveraged to facilitate subswarms entrapment toward different targets,thus improving the global multi-target entrapping performance.The results demonstrate the superiority of SUNDERGRN in the performance of structuring subswarms and entrapping 10 targets with 200 robots in an environment confined by obstacles and with only local information accessible. 展开更多
关键词 Swarm robots Local information gene regulatory network Swarm grouping Trapping pattern Confined multitarget environment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部