With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking met...An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking method,requires seeking the "a priori" probability of speech absence that is derived by applying microphone input signal and the noise signal based on the estimated value of the "a posteriori" signal-to-noise ratio(SNR).To overcome this problem,first,the optimal values in terms of the perceived speech quality of a variety of noise types are derived.Second,the estimated optimal values are assigned according to the determined noise type which is classified by a real-time noise classification algorithm based on the Gaussian mixture model(GMM).The proposed algorithm estimates the speech absence probability using a noise classification algorithm which is based on GMM to apply the optimal parameter of each noise type,unlike the conventional approach which uses a fixed threshold and smoothing parameter.The performance of the proposed method was evaluated by objective tests,such as the perceptual evaluation of speech quality(PESQ) and composite measure.Performance was then evaluated by a subjective test,namely,mean opinion scores(MOS) under various noise environments.The proposed method show better results than existing methods.展开更多
以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征...以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。展开更多
为提高基于Kriging模型信息熵函数(Information Entropy Function,H)的可靠性计算效率,考虑样本点与极限状态曲面的空间距离和随机变量的概率密度函数,通过对样本点的信息熵赋予不同的权值,提出权重信息熵函数(Weight Information Entro...为提高基于Kriging模型信息熵函数(Information Entropy Function,H)的可靠性计算效率,考虑样本点与极限状态曲面的空间距离和随机变量的概率密度函数,通过对样本点的信息熵赋予不同的权值,提出权重信息熵函数(Weight Information Entropy Function,WH)。该学习函数选择更接近极限状态曲面且概率密度函数值较大的样本点更新Kriging模型,从而减少对功能函数的调用次数,有效提高可靠性计算效率。通过算例表明:与其他学习函数相比,WH学习函数在建立Kriging模型过程中所需要的样本点更少,收敛速度更快,计算效率更高。展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Project supported by an Inha University Research GrantProject(10031764) supported by the Strategic Technology Development Program of Ministry of Knowledge Economy,Korea
文摘An improved speech absence probability estimation was proposed using environmental noise classification for speech enhancement.A relevant noise estimation approach,known as the speech presence uncertainty tracking method,requires seeking the "a priori" probability of speech absence that is derived by applying microphone input signal and the noise signal based on the estimated value of the "a posteriori" signal-to-noise ratio(SNR).To overcome this problem,first,the optimal values in terms of the perceived speech quality of a variety of noise types are derived.Second,the estimated optimal values are assigned according to the determined noise type which is classified by a real-time noise classification algorithm based on the Gaussian mixture model(GMM).The proposed algorithm estimates the speech absence probability using a noise classification algorithm which is based on GMM to apply the optimal parameter of each noise type,unlike the conventional approach which uses a fixed threshold and smoothing parameter.The performance of the proposed method was evaluated by objective tests,such as the perceptual evaluation of speech quality(PESQ) and composite measure.Performance was then evaluated by a subjective test,namely,mean opinion scores(MOS) under various noise environments.The proposed method show better results than existing methods.
文摘以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。