Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof ...Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.展开更多
The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically dem...The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically demonstrate the security of information transmission and processing under nonrandom noise(or vulnerability backdoor attack)conditions in cyberspace.This paper first proposes a security model for cyberspace information transmission and processing channels based on error correction coding theory.First,we analyze the fault tolerance and non-randomness problem of Dynamic Heterogeneous Redundancy(DHR)structured information transmission and processing channel under the condition of non-random noise or attacks.Secondly,we use a mathematical statistical method to demonstrate that for non-random noise(or attacks)on discrete memory channels,there exists a DHR-structured channel and coding scheme that enables the average system error probability to be arbitrarily small.Finally,to construct suitable coding and heterogeneous channels,we take Turbo code as an example and simulate the effects of different heterogeneity,redundancy,output vector length,verdict algorithm and dynamism on the system,which is an important guidance for theory and engineering practice.展开更多
The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model ...The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.展开更多
基金National High Technical Research and Development Program of China(863 program)under Grant No. 2007AA01Z471
文摘Provable security has become a popular approach for analyzing the security of cryptographic protocols.However,writing and verifying proofs by hand are prone to errors.This paper advocates the automatic security proof framework with sequences of games.We make slight modifications to Blanchet's calculus to make it easy for parsing the initial game.The main contribution of this work is that it introduces algebraic properties with observational equivalences to automatic security proofs,and thus can deal with some practical cryptographic schemes with hard problems.We illustrate the use of algebraic properties in the framework by proving the semantic security of the ElGamal encryption scheme.
基金supported by National Key R&D Program of China for Young Scientists:Cyberspace Endogenous Security Mechanisms and Evaluation Methods(No.2022YFB3102800).
文摘The security of information transmission and processing due to unknown vulnerabilities and backdoors in cyberspace is becoming increasingly problematic.However,there is a lack of effective theory to mathematically demonstrate the security of information transmission and processing under nonrandom noise(or vulnerability backdoor attack)conditions in cyberspace.This paper first proposes a security model for cyberspace information transmission and processing channels based on error correction coding theory.First,we analyze the fault tolerance and non-randomness problem of Dynamic Heterogeneous Redundancy(DHR)structured information transmission and processing channel under the condition of non-random noise or attacks.Secondly,we use a mathematical statistical method to demonstrate that for non-random noise(or attacks)on discrete memory channels,there exists a DHR-structured channel and coding scheme that enables the average system error probability to be arbitrarily small.Finally,to construct suitable coding and heterogeneous channels,we take Turbo code as an example and simulate the effects of different heterogeneity,redundancy,output vector length,verdict algorithm and dynamism on the system,which is an important guidance for theory and engineering practice.
文摘The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.