The characteristics of surface maneuver targets are analyzed and a 3-D relative motion model for missiles and targets is established. A variable structure guidance law is designed considering the characteristics of ta...The characteristics of surface maneuver targets are analyzed and a 3-D relative motion model for missiles and targets is established. A variable structure guidance law is designed considering the characteristics of targets. In the guidance law, the distance between missiles and targets as well as the missile-target relative velocity are all substituted by estimation values. The estimation errors, the target's velocity, and the maneuver acceleration are all treated as bounded disturbance. The guidance law proposed can be implemented conveniently in engineering with little target information. The performance of the guidance system is analyzed theoretically and the numerical simulation result shows the effectiveness of the guidance law.展开更多
A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into accou...A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into account based on switched nonlinear systems. Compared with traditional backstepping design methods,the proposed method utilizes the added integrals of attitude angle and angular rate tracking errors to further decrease the tracking errors. Moreover, to reduce the computation complexity, a rapid convergent differentiator is employed to obtain the derivative of the virtual control command. Finally, for disturbance rejection, based on the idea from the extended state observer(ESO), two disturbance observers are designed by using non-smooth functions to estimate the disturbances in the switched nonlinear systems. All signals of the closed-loop system are proven to be uniformly ultimately bounded under the Lyapunov function framework. Simulation results demonstrate the effectiveness of the proposed control scheme.展开更多
In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm...In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.展开更多
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe...Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.展开更多
The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adapt...The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person t...This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person theorem. The splendid selection of switching manifold for each subsystem makes the design relatively straightforward and can be easily realized. An illustrate example is given.展开更多
This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for ...This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for a decoupling IM system is presented. The scheme is shown to be robust to parametric variations and external disturbances. Simulation results show the stability and effectiveness of the proposed scheme展开更多
A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of c...A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method.High precise and robust tracking of required attitude angles can be achieved in complicated air space.A mathematical model of reusable launch vehicle is presented first,and then a controller of flight system is presented.Base on the mathematical model,the controller is divided into two parts:variable-structure controller and neural network module which is used to modify the parameters of controller.This control system decouples the lateraldirectional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles.After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters.The final simulation shows that the control system has a good accurate,robust and de-coupled tracking performance.The stable state error is less than 1°,and the overshoot is less than 5%.展开更多
The synchronization problem under two cases is considered. One is that the bound on the uncertainty existing in the controller is known, the other is that the bound is unknown. In the latter case, the simple adaptatio...The synchronization problem under two cases is considered. One is that the bound on the uncertainty existing in the controller is known, the other is that the bound is unknown. In the latter case, the simple adaptation laws for upper bound on the norm of the uncertainty is proposed. Using this adaptive upper bound, a variable structure control is designed. The proposed method does not guarantee the convergence of the adaptive upper bound to the real one but makes the system asymptotically stable.展开更多
A variable structure model reference adaptive control problem for the nonlinear system is studied in this paper. First, according to the relative degree concept of th nonlinear control system an error equation between...A variable structure model reference adaptive control problem for the nonlinear system is studied in this paper. First, according to the relative degree concept of th nonlinear control system an error equation between the outputs of the reference model and the controlled plant is derived. Then, by using the variable structrue control method, an algorithm of variable structure model reference adaptive control is deduced on the basis of a new concept of reaching law. The definition of the SISO system is introduced into the MIMO nonlinear system. Finally, as an example, a pendulum nonlinear control system is simulated to demonstrated the effectiveness of the method. The results show that the method has some advantages: the design is simple, intuitive and easy to be realized in engineering. Besides, it is of practical significance for the synthesis of nonlinear control systems.展开更多
The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design consid...Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.展开更多
The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic cha...The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic characteristic analysis method based on the unascertained factor method is given.The computational expression of structural characteristic is developed by the mathematics expression of unascertained factor and the principles of unascertained rational numbers arithmetic.An example is given,in which the possible values and confidence degrees of the unascertained structure characteristics are obtained.The calculated results show that the method is feasible and effective.展开更多
The problem of variable sampling time interval which appears in application of Kalman Filtering is analyzed and the corresponding filtering process with or without present transition matrix is suggested, then an appli...The problem of variable sampling time interval which appears in application of Kalman Filtering is analyzed and the corresponding filtering process with or without present transition matrix is suggested, then an application experiment for astronomical surveying is introduced. In this process, the known stochastically variable sampling time intervals play the roles as deterministic input sequences of the state-space description, and the corresponding matrix and (if needed) state transition matrix can be established by performing real-time and structure-linear system identification.展开更多
文摘The characteristics of surface maneuver targets are analyzed and a 3-D relative motion model for missiles and targets is established. A variable structure guidance law is designed considering the characteristics of targets. In the guidance law, the distance between missiles and targets as well as the missile-target relative velocity are all substituted by estimation values. The estimation errors, the target's velocity, and the maneuver acceleration are all treated as bounded disturbance. The guidance law proposed can be implemented conveniently in engineering with little target information. The performance of the guidance system is analyzed theoretically and the numerical simulation result shows the effectiveness of the guidance law.
基金supported by the National Natural Science Foundation of China(61374012)the Aeronautical Science Foundation of China(2016ZA51011)
文摘A switching disturbance rejection attitude control law is proposed for a near space vehicle(NSV) with variable structure.The multiple flight modes, system uncertainties and disturbances of the NSV are taken into account based on switched nonlinear systems. Compared with traditional backstepping design methods,the proposed method utilizes the added integrals of attitude angle and angular rate tracking errors to further decrease the tracking errors. Moreover, to reduce the computation complexity, a rapid convergent differentiator is employed to obtain the derivative of the virtual control command. Finally, for disturbance rejection, based on the idea from the extended state observer(ESO), two disturbance observers are designed by using non-smooth functions to estimate the disturbances in the switched nonlinear systems. All signals of the closed-loop system are proven to be uniformly ultimately bounded under the Lyapunov function framework. Simulation results demonstrate the effectiveness of the proposed control scheme.
文摘In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively.
基金This project was supported by the National Natural Science Foundation of China (60074013)the Foundation of New Era Talent Engineering of Yangzhou University.
文摘The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
文摘This paper, at the first time, considers the problem of decentralized variable structure control of complex giant singular uncertainty systems by using the property of diagonally dominant matrix and Frobenius-Person theorem. The splendid selection of switching manifold for each subsystem makes the design relatively straightforward and can be easily realized. An illustrate example is given.
文摘This paper describes the important application of variable structure control (VSC) theory on induction motor (IM) decoupling control system. A design scheme using singular system variable structure control method for a decoupling IM system is presented. The scheme is shown to be robust to parametric variations and external disturbances. Simulation results show the stability and effectiveness of the proposed scheme
文摘A flight control system is designed for a reusable launch vehicle with aerodynamic control surfaces and reaction control system based on a variable-structure control and neural network theory.The control problems of coupling among the channels and the uncertainty of model parameters are solved by using the method.High precise and robust tracking of required attitude angles can be achieved in complicated air space.A mathematical model of reusable launch vehicle is presented first,and then a controller of flight system is presented.Base on the mathematical model,the controller is divided into two parts:variable-structure controller and neural network module which is used to modify the parameters of controller.This control system decouples the lateraldirectional tunnels well with a neural network sliding mode controller and provides a robust and de-coupled tracking for mission angle profiles.After this a control allocation algorithm is employed to allocate the torque moments to aerodynamic control surfaces and thrusters.The final simulation shows that the control system has a good accurate,robust and de-coupled tracking performance.The stable state error is less than 1°,and the overshoot is less than 5%.
文摘The synchronization problem under two cases is considered. One is that the bound on the uncertainty existing in the controller is known, the other is that the bound is unknown. In the latter case, the simple adaptation laws for upper bound on the norm of the uncertainty is proposed. Using this adaptive upper bound, a variable structure control is designed. The proposed method does not guarantee the convergence of the adaptive upper bound to the real one but makes the system asymptotically stable.
文摘A variable structure model reference adaptive control problem for the nonlinear system is studied in this paper. First, according to the relative degree concept of th nonlinear control system an error equation between the outputs of the reference model and the controlled plant is derived. Then, by using the variable structrue control method, an algorithm of variable structure model reference adaptive control is deduced on the basis of a new concept of reaching law. The definition of the SISO system is introduced into the MIMO nonlinear system. Finally, as an example, a pendulum nonlinear control system is simulated to demonstrated the effectiveness of the method. The results show that the method has some advantages: the design is simple, intuitive and easy to be realized in engineering. Besides, it is of practical significance for the synthesis of nonlinear control systems.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金supports from and Na-tional key research and development program of China(project No.2018YFC0705703)the National Natural Science Foundation of China(project No.51708521,51778183).
文摘Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.
基金the National Defense Science and Technology Research Projects of China (51421060505DZ0155)the National Science Foundation of Shaanxi Province of China (2005A009)
文摘The dynamic characteristic analysis model of antenna structures is built,in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables.And a structure dynamic characteristic analysis method based on the unascertained factor method is given.The computational expression of structural characteristic is developed by the mathematics expression of unascertained factor and the principles of unascertained rational numbers arithmetic.An example is given,in which the possible values and confidence degrees of the unascertained structure characteristics are obtained.The calculated results show that the method is feasible and effective.
文摘The problem of variable sampling time interval which appears in application of Kalman Filtering is analyzed and the corresponding filtering process with or without present transition matrix is suggested, then an application experiment for astronomical surveying is introduced. In this process, the known stochastically variable sampling time intervals play the roles as deterministic input sequences of the state-space description, and the corresponding matrix and (if needed) state transition matrix can be established by performing real-time and structure-linear system identification.