In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
Under the complicated electromagnetism circumstance, the model of data fusion control and guidance of surface-to-air missile weapon systems is established. Such ways and theories as Elman-NN, radar tracking and filter...Under the complicated electromagnetism circumstance, the model of data fusion control and guidance of surface-to-air missile weapon systems is established. Such ways and theories as Elman-NN, radar tracking and filter's data fusion net based on the group method for data-processing (GMRDF) are applied to constructing the model of data fusion. The highly reliable state estimation of the tracking targets and the improvement in accuracy of control and guidance are obtained. The purpose is optimization design of data fusion control and guidance of surface-to-air missile weapon systems and improving the fighting effectiveness of surface-to-air missile weapon systems.展开更多
面向有人车引导的无人多车编队场景,设计并实现无人车在编队行驶中的车辆识别与轨迹跟踪控制系统,提出了一种多传感器后融合动目标检测算法,使用激光雷达、相机和毫米波雷达3种传感器作为数据源,分别使用欧式聚类、深度学习和运动学推...面向有人车引导的无人多车编队场景,设计并实现无人车在编队行驶中的车辆识别与轨迹跟踪控制系统,提出了一种多传感器后融合动目标检测算法,使用激光雷达、相机和毫米波雷达3种传感器作为数据源,分别使用欧式聚类、深度学习和运动学推理的方法对潜在目标进行检测,进而提出后融合方法将多源检测结果融合以实现对前方车辆的准确检测。基于前车轨迹生成期望路径并设计卡尔曼滤波器对期望路径进行平滑和滤波。构建车辆动力学模型、车辆道路误差模型并设计鲁棒H∞控制器进行车辆轨迹跟踪控制仿真。仿真与实车验证结果表明:在测试路段对前方车辆的平均识别准确率大于95%;实时期望路径相对于真实轨迹的均方差和轨迹平均变化率在滤波前后分别降低17.3%和48.6%;侧向控制位置误差和航向角误差相较于PID(proportional integral derivative)控制分别降低了29%和41%;车辆编队以最高54 km/h的速度实现编队整体的稳定行驶。展开更多
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
文摘Under the complicated electromagnetism circumstance, the model of data fusion control and guidance of surface-to-air missile weapon systems is established. Such ways and theories as Elman-NN, radar tracking and filter's data fusion net based on the group method for data-processing (GMRDF) are applied to constructing the model of data fusion. The highly reliable state estimation of the tracking targets and the improvement in accuracy of control and guidance are obtained. The purpose is optimization design of data fusion control and guidance of surface-to-air missile weapon systems and improving the fighting effectiveness of surface-to-air missile weapon systems.
基金Supported in part by the University of Colorado, the US National Science Foundation (Grants CMS-9625086,CMS-0201459, IIS-9711936, and HRD-0095944) the US Office of Naval Research (Grants N00014-97-1-0642 and N00014-02-1-0136) the Colorado Center for Information Storage, the Colorado Advanced Software Institute, Maxtor Corporation, Quantum Corporation, Storage Technology Corporation, and Data Fusion Corporation
文摘Research in control systems, sensor fusion and haptic interfaces is reviewed.
文摘面向有人车引导的无人多车编队场景,设计并实现无人车在编队行驶中的车辆识别与轨迹跟踪控制系统,提出了一种多传感器后融合动目标检测算法,使用激光雷达、相机和毫米波雷达3种传感器作为数据源,分别使用欧式聚类、深度学习和运动学推理的方法对潜在目标进行检测,进而提出后融合方法将多源检测结果融合以实现对前方车辆的准确检测。基于前车轨迹生成期望路径并设计卡尔曼滤波器对期望路径进行平滑和滤波。构建车辆动力学模型、车辆道路误差模型并设计鲁棒H∞控制器进行车辆轨迹跟踪控制仿真。仿真与实车验证结果表明:在测试路段对前方车辆的平均识别准确率大于95%;实时期望路径相对于真实轨迹的均方差和轨迹平均变化率在滤波前后分别降低17.3%和48.6%;侧向控制位置误差和航向角误差相较于PID(proportional integral derivative)控制分别降低了29%和41%;车辆编队以最高54 km/h的速度实现编队整体的稳定行驶。