Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression a...Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.展开更多
The passivity and feedback passification problems of fuzzy systems with parameter uncertainties and impulse are first presented in this paper. Based on the parallel distributed compensation (PDC) technique, some pas...The passivity and feedback passification problems of fuzzy systems with parameter uncertainties and impulse are first presented in this paper. Based on the parallel distributed compensation (PDC) technique, some passivity and passification conditions are proposed in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the correctness and effectiveness of our theoretical results.展开更多
We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ...We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.展开更多
This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability ex...This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability expressed in terms of linear matrix inequalities (LMIs) is presented.展开更多
The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller ...The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.展开更多
A system for prognosis of tank failures was set up based on the results of analysis on fault phenomena. An algorithm incorporating fuzzy mathematics with the BP neural network was used to solve this prognosis model, a...A system for prognosis of tank failures was set up based on the results of analysis on fault phenomena. An algorithm incorporating fuzzy mathematics with the BP neural network was used to solve this prognosis model, and the availability of this model was also analyzed. This neural network-based fuzzy system for prognosis of tank failures has been put into operation at Huangdao oil terminal. The application results have shown that this system is effective for real-time prognosis of various potential tank failures and timely adoption of mitigative measures to avoid major tank accidents, which would have great significance for safeguarding the safe operation of the oil terminal.展开更多
Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy ...Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy a new variable, which is relative to the grade of fuzzy membership function, is introduced to the stability analysis and a new stability conclusion is deduced. The definition of stability condition in this paper is different from previous works, though they are similar in form. With the proposed method, the simulation in flight control law shows a better effectiveness.展开更多
This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is ...This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.展开更多
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin...A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.展开更多
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia...Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities.展开更多
Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on diffe...Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.展开更多
Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclus...Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control.展开更多
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
A formalized calculus system called F_fuzzy calculus system, which is a symbol deduction system to formalize fuzzy inference, is constructed in this paper. The fuzzy modus ponens was completely formalized in this calc...A formalized calculus system called F_fuzzy calculus system, which is a symbol deduction system to formalize fuzzy inference, is constructed in this paper. The fuzzy modus ponens was completely formalized in this calculus system.展开更多
This paper give criterions on finite-time control of fuzzy discrete-time nonlinear system subject to exogenous disturbance.Employing the Lyapunov function theory,several suffcient conditions including relaxed ones are...This paper give criterions on finite-time control of fuzzy discrete-time nonlinear system subject to exogenous disturbance.Employing the Lyapunov function theory,several suffcient conditions including relaxed ones are presented for finite-time stability via fuzzy controller laws.An illustrative example is given to demonstrate the effectiveness of the proposed method.展开更多
Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub- sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal- ysis (F...Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub- sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal- ysis (FMEA) and fuzzy inference system (FIS). Fuzzy theory will be able to model uncertainties. Fuzzy FMEA provides a tool that can work in a better way with vague concepts and without sufficient informa- tion than conventional FMEA. In this paper, S and D are obtained from fuzzy rules and 0 is obtained from artificial neural network (ANN). FMEA is performed by developing a fuzzy risk priority number (FRPN). The FRPN for two stations in Tehran No.4 subway line is 3.1 and 5.5, respectively. To investigate the suit- ability of this approach, the predictions by FMEA have been compared with actual data. The results show that this method can be useful in the prediction of subsidence risk in urban tunnels.展开更多
In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of f...In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of fuzzy IF-THEN rules are employed to represent many typical hyperchaotic systems exactly. The benefit of employing the T-S fuzzy models lies in mathematical simplicity of analysis. Based on the T-S fuzzy hyperchaotic models, two fuzzy controllers arc designed via parallel distributed compensation (PDC) and exact linearization (EL) techniques to synchronize two identical hyperchaotic systems with uncertain parameters and two different hyperchaotic systems, respectively. The sufficient conditions for the robust synchronization of two identical hyperchaotic systems with uncertain parameters and the asymptotic synchronization of two different hyperchaotic systems are derived by applying the Lyapunov stability theory. This method is a universal one of synchronizing two identical or different hyperchaotic systems. Numerical examples are given to demonstrate the validity of the proposed fuzzy model and hyperchaotic synchronization scheme.展开更多
The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype...The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.展开更多
A system to monitor the operational state of a coal mine drainage system is presented, fault problems are diagnosed and solved. The system includes a Single Chip Microprocessor (SCM) Atmega169 and an industrial PC use...A system to monitor the operational state of a coal mine drainage system is presented, fault problems are diagnosed and solved. The system includes a Single Chip Microprocessor (SCM) Atmega169 and an industrial PC used as a master-slave structure. Characteristic parameters of the drainage system were extracted and analysed. As well, a research project on the fault diagnosis of centrifugal water pump based on a fuzzy synthetic evaluation method is initiated. The proposed monitoring and fault diagnostic system can improve the automation, safety, reliability, economy and efficiency of mine drainage systems considerably, decrease blindness and shorten the time required for water pump maintenance.展开更多
An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the desig...An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.展开更多
文摘Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.
文摘The passivity and feedback passification problems of fuzzy systems with parameter uncertainties and impulse are first presented in this paper. Based on the parallel distributed compensation (PDC) technique, some passivity and passification conditions are proposed in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the correctness and effectiveness of our theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61203047 and 60904023)
文摘We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.
文摘This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability expressed in terms of linear matrix inequalities (LMIs) is presented.
基金Supported by the National Natural Science Foundation of China(60874084)the Academy of Finland(135225,127299)
文摘The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.
文摘A system for prognosis of tank failures was set up based on the results of analysis on fault phenomena. An algorithm incorporating fuzzy mathematics with the BP neural network was used to solve this prognosis model, and the availability of this model was also analyzed. This neural network-based fuzzy system for prognosis of tank failures has been put into operation at Huangdao oil terminal. The application results have shown that this system is effective for real-time prognosis of various potential tank failures and timely adoption of mitigative measures to avoid major tank accidents, which would have great significance for safeguarding the safe operation of the oil terminal.
基金supported by the Aviation Science Foundation under Grant No.20110776001Zhejiang Provincial Natural Science Foundation under Grants No. Y1100696 and No.R1090052+1 种基金the Fundamental Research Funds for the Central Universities under Grant No.2011QNA4021National Natural Science Foundation of China under Grant No.61070003 and No.61071128
文摘Unlike the previous research works analyzing the stability of the T-S (Takagi-Sugeno) fuzzy model, an extension on the stability condition of T-S fuzzy systems with a different strategy is provided. In the strategy a new variable, which is relative to the grade of fuzzy membership function, is introduced to the stability analysis and a new stability conclusion is deduced. The definition of stability condition in this paper is different from previous works, though they are similar in form. With the proposed method, the simulation in flight control law shows a better effectiveness.
文摘This paper addresses the problem of the fuzzy H ∞state feedback control for a class of uncertain nonlinear systems with time delay. The Takagi Sugeno (T S) mo del with time delay and parameter uncertainties is adopted for modeling of nonlinear system. The systematic design procedure for the fuzzy robust controller based on linear matrix inequality (LMI) is given. Some sufficient conditions are derived for the existence of fuzzy H ∞ state feedback controllers such that the closed loop system is asymptotically stable and the effect of the disturbance input on controlled output is reduced to a prescribed level. An example is given to demonstrate the effectiveness of the proposed method.
文摘A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.
文摘Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities.
文摘Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.
文摘Aim To build an adaptive fuzzy neural controller and simulate it. Methods\ Fuzzy logic and back propagation(BP) algorithm are combined to utilize their advantages while avoiding the disadvantages. Results and Conclusion\ Simulation results of the third order plant with disturbances and dead times show the validity of the presented controller. The presented controller can control cases that preceding controllers were unable to control.
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
文摘A formalized calculus system called F_fuzzy calculus system, which is a symbol deduction system to formalize fuzzy inference, is constructed in this paper. The fuzzy modus ponens was completely formalized in this calculus system.
基金Supported by the NNSF of China(60874006)Supported by the Foundation of Henan Educational Committee(2011A120003)+1 种基金Supported by the Doctoral Foundation of Henan University of Technology(2009BS048)Supported by the Foundation of Henan University of Technology(09XJC011)
文摘This paper give criterions on finite-time control of fuzzy discrete-time nonlinear system subject to exogenous disturbance.Employing the Lyapunov function theory,several suffcient conditions including relaxed ones are presented for finite-time stability via fuzzy controller laws.An illustrative example is given to demonstrate the effectiveness of the proposed method.
文摘Construction of metro tunnels in dense and crowded urban areas is faced with many risks, such as sub- sidence. The purpose of this paper was the prediction of subsidence risk by failure mode and effect anal- ysis (FMEA) and fuzzy inference system (FIS). Fuzzy theory will be able to model uncertainties. Fuzzy FMEA provides a tool that can work in a better way with vague concepts and without sufficient informa- tion than conventional FMEA. In this paper, S and D are obtained from fuzzy rules and 0 is obtained from artificial neural network (ANN). FMEA is performed by developing a fuzzy risk priority number (FRPN). The FRPN for two stations in Tehran No.4 subway line is 3.1 and 5.5, respectively. To investigate the suit- ability of this approach, the predictions by FMEA have been compared with actual data. The results show that this method can be useful in the prediction of subsidence risk in urban tunnels.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60534010, 60572070, 60774048 and 60728307)the Program for Changjiang Scholars and Innovative Research Groups of China (Grant No 60521003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070145015)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)
文摘In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of fuzzy IF-THEN rules are employed to represent many typical hyperchaotic systems exactly. The benefit of employing the T-S fuzzy models lies in mathematical simplicity of analysis. Based on the T-S fuzzy hyperchaotic models, two fuzzy controllers arc designed via parallel distributed compensation (PDC) and exact linearization (EL) techniques to synchronize two identical hyperchaotic systems with uncertain parameters and two different hyperchaotic systems, respectively. The sufficient conditions for the robust synchronization of two identical hyperchaotic systems with uncertain parameters and the asymptotic synchronization of two different hyperchaotic systems are derived by applying the Lyapunov stability theory. This method is a universal one of synchronizing two identical or different hyperchaotic systems. Numerical examples are given to demonstrate the validity of the proposed fuzzy model and hyperchaotic synchronization scheme.
基金Project partially supported by the Natural Science Foundation of Educational Committee of Anhui Province, China (Grant No 2006kj250B).
文摘The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.
基金provided by the Scientific Research Program of Shaanxi Province,Department of Education (No.09JK582)
文摘A system to monitor the operational state of a coal mine drainage system is presented, fault problems are diagnosed and solved. The system includes a Single Chip Microprocessor (SCM) Atmega169 and an industrial PC used as a master-slave structure. Characteristic parameters of the drainage system were extracted and analysed. As well, a research project on the fault diagnosis of centrifugal water pump based on a fuzzy synthetic evaluation method is initiated. The proposed monitoring and fault diagnostic system can improve the automation, safety, reliability, economy and efficiency of mine drainage systems considerably, decrease blindness and shorten the time required for water pump maintenance.
基金Project supported by the Research Foundation of Education Bureau of Hebei Province,China(Grant No.QN2014096)
文摘An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.