To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructe...Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructed by combining SVM^light algorithm with directed acyclic graph SVM (DAGSVM) method, named DAGSVM^light A new method is proposed to select the working set which is identical to the working set selected by SVM^light approach. Experimental results indicate DAGSVM^light is competitive with DAGSMO. It is more suitable for practice use. It may be an especially useful tool for large-scale multiclass classification problems and lead to more widespread use of SVMs in the engineering community due to its good performance.展开更多
Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning m...Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular and effective tools. In the perspective of kernel matrix, a technique namely Eigen- matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy has a lot of nice properties which deserve more exploration. This paper investigates the major role of Eigen-matrix translation in classification. The authors propose that its importance lies in the dimension reduction of predictor attributes within the data set. This is very important when the dimension of features is huge. The authors show by numerical experiments on real biological data sets that the proposed framework is crucial and effective in improving classification accuracy. This can therefore serve as a novel perspective for future research in dimension reduction problems.展开更多
模糊支持向量机(fuzzy support vector machine,FSVM)通过为每个样例设置模糊化训练参数,达到抑制离群点及噪声数据对分类器不利影响的目的。提出了基于预分类的FSVM,每个样例的模糊权重通过关联于该样例的预分类面来确定。该方法不仅...模糊支持向量机(fuzzy support vector machine,FSVM)通过为每个样例设置模糊化训练参数,达到抑制离群点及噪声数据对分类器不利影响的目的。提出了基于预分类的FSVM,每个样例的模糊权重通过关联于该样例的预分类面来确定。该方法不仅考虑了各个样例在未来分类中的作用效果,还考虑了分类器对离群点及噪声数据的敏感性。这样确定的模糊权重能使SVM根据离群点及噪声数据的影响情况决定抑制强度,减少或避免无视数据具体特征的盲目抑制。在IDA、UCI等标准数据集上的实验验证了所提方法的合理性和有效性。展开更多
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
文摘Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructed by combining SVM^light algorithm with directed acyclic graph SVM (DAGSVM) method, named DAGSVM^light A new method is proposed to select the working set which is identical to the working set selected by SVM^light approach. Experimental results indicate DAGSVM^light is competitive with DAGSMO. It is more suitable for practice use. It may be an especially useful tool for large-scale multiclass classification problems and lead to more widespread use of SVMs in the engineering community due to its good performance.
基金supported by Research Grants Council of Hong Kong under Grant No.17301214HKU CERG Grants,Fundamental Research Funds for the Central Universities+2 种基金the Research Funds of Renmin University of ChinaHung Hing Ying Physical Research Grantthe Natural Science Foundation of China under Grant No.11271144
文摘Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular and effective tools. In the perspective of kernel matrix, a technique namely Eigen- matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy has a lot of nice properties which deserve more exploration. This paper investigates the major role of Eigen-matrix translation in classification. The authors propose that its importance lies in the dimension reduction of predictor attributes within the data set. This is very important when the dimension of features is huge. The authors show by numerical experiments on real biological data sets that the proposed framework is crucial and effective in improving classification accuracy. This can therefore serve as a novel perspective for future research in dimension reduction problems.
文摘模糊支持向量机(fuzzy support vector machine,FSVM)通过为每个样例设置模糊化训练参数,达到抑制离群点及噪声数据对分类器不利影响的目的。提出了基于预分类的FSVM,每个样例的模糊权重通过关联于该样例的预分类面来确定。该方法不仅考虑了各个样例在未来分类中的作用效果,还考虑了分类器对离群点及噪声数据的敏感性。这样确定的模糊权重能使SVM根据离群点及噪声数据的影响情况决定抑制强度,减少或避免无视数据具体特征的盲目抑制。在IDA、UCI等标准数据集上的实验验证了所提方法的合理性和有效性。