为了弥补汽车被动悬架没有主动控制力的缺陷,设计了一种基于传统被动悬架结构的直线电机式主动悬架。在被动悬架中加入直线电机,可以增加主动悬架的阻尼力,降低汽车的振动。首先,对直线电机的结构进行设计;其次,运用ANSYS/Maxwell磁场...为了弥补汽车被动悬架没有主动控制力的缺陷,设计了一种基于传统被动悬架结构的直线电机式主动悬架。在被动悬架中加入直线电机,可以增加主动悬架的阻尼力,降低汽车的振动。首先,对直线电机的结构进行设计;其次,运用ANSYS/Maxwell磁场分析软件和控制变量法,优化直线电机各部分结构尺寸参数,结果表明,直线电机电磁推力的波动降低了83%,同时稳态推力提升了10%;最后,在MATLAB/Simulink软件中搭建直线电机式主动悬架的仿真模型,使用模糊比例-积分-微分(proportion integral differential,PID)对直线电机式主动悬架系统进行控制,分别在时域和频域进行分析,结果表明,相较于被动悬架,直线电机式主动悬架的车身加速度、悬架动挠度、轮胎动荷载都得到了有效抑制,车身加速度功率谱密度也有了大幅度的降低,有效地提高了车辆平顺性和操纵稳定性。展开更多
多模态控制主要采用快速切换控制方式实现,此方法在切换瞬间易引起控制器输出和系统响应出现抖动现象。为平滑过渡过程,提出了一种基于Sugeno模糊推理的控制模态切换方法,将不同控制器的控制输出作为输入引入到Sugeno系统的输出隶属函数...多模态控制主要采用快速切换控制方式实现,此方法在切换瞬间易引起控制器输出和系统响应出现抖动现象。为平滑过渡过程,提出了一种基于Sugeno模糊推理的控制模态切换方法,将不同控制器的控制输出作为输入引入到Sugeno系统的输出隶属函数,并将输出隶属函数的概念扩展以实现模态的平滑过渡。通过仿真分析基于非线性度变换比例积分微分(proportional integral differential,PID)控制和常规PID控制2种方式在静止无功补偿器上的控制效果,验证了该方法可以平滑抖动现象,实现模态切换的平稳过渡。展开更多
将某种新型液压缸综合性能试验台的加载系统作为研究对象,针对其易受外界干扰导致加载力不稳定、精度低的问题,提出了一种基于模糊比例积分微分(Proportional integral differential,PID)控制策略的试验台加载控制方法。首先根据试验台...将某种新型液压缸综合性能试验台的加载系统作为研究对象,针对其易受外界干扰导致加载力不稳定、精度低的问题,提出了一种基于模糊比例积分微分(Proportional integral differential,PID)控制策略的试验台加载控制方法。首先根据试验台的结构特征与被动控制理论,构造位置系统与加载系统的联合控制模型,然后利用MATLAB软件仿真位置系统影响下的输出加载力,得到控制精度的影响因素。最后将模糊PID控制策略添加到原有的试验台加载系统控制模块中,使其能够动态调节控制器的参数,有效提升了输出加载力的响应速度,缩短了响应时间。展开更多
文摘为了弥补汽车被动悬架没有主动控制力的缺陷,设计了一种基于传统被动悬架结构的直线电机式主动悬架。在被动悬架中加入直线电机,可以增加主动悬架的阻尼力,降低汽车的振动。首先,对直线电机的结构进行设计;其次,运用ANSYS/Maxwell磁场分析软件和控制变量法,优化直线电机各部分结构尺寸参数,结果表明,直线电机电磁推力的波动降低了83%,同时稳态推力提升了10%;最后,在MATLAB/Simulink软件中搭建直线电机式主动悬架的仿真模型,使用模糊比例-积分-微分(proportion integral differential,PID)对直线电机式主动悬架系统进行控制,分别在时域和频域进行分析,结果表明,相较于被动悬架,直线电机式主动悬架的车身加速度、悬架动挠度、轮胎动荷载都得到了有效抑制,车身加速度功率谱密度也有了大幅度的降低,有效地提高了车辆平顺性和操纵稳定性。
文摘多模态控制主要采用快速切换控制方式实现,此方法在切换瞬间易引起控制器输出和系统响应出现抖动现象。为平滑过渡过程,提出了一种基于Sugeno模糊推理的控制模态切换方法,将不同控制器的控制输出作为输入引入到Sugeno系统的输出隶属函数,并将输出隶属函数的概念扩展以实现模态的平滑过渡。通过仿真分析基于非线性度变换比例积分微分(proportional integral differential,PID)控制和常规PID控制2种方式在静止无功补偿器上的控制效果,验证了该方法可以平滑抖动现象,实现模态切换的平稳过渡。
文摘将某种新型液压缸综合性能试验台的加载系统作为研究对象,针对其易受外界干扰导致加载力不稳定、精度低的问题,提出了一种基于模糊比例积分微分(Proportional integral differential,PID)控制策略的试验台加载控制方法。首先根据试验台的结构特征与被动控制理论,构造位置系统与加载系统的联合控制模型,然后利用MATLAB软件仿真位置系统影响下的输出加载力,得到控制精度的影响因素。最后将模糊PID控制策略添加到原有的试验台加载系统控制模块中,使其能够动态调节控制器的参数,有效提升了输出加载力的响应速度,缩短了响应时间。