The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score fun...The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score function is first used to calculate the score of each attribute value and a score matrix is constructed, and then it is transformed into a normalized score matrix. Based on the normalized score matrix, an entropy-based procedure is proposed to derive attribute weights. Furthermore, the additive weighted averaging operator is utilized to fuse all the normalized scores into the overall scores of alternatives, by which the ranking of all the given alternatives is obtained. This paper is concluded by extending the above results to interval-valued intuitionistic fuzzy set theory, and an illustrative example is also provided.展开更多
Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generaliz...Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.展开更多
From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the de...From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.展开更多
The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational law...The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars of China(70625005).
文摘The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score function is first used to calculate the score of each attribute value and a score matrix is constructed, and then it is transformed into a normalized score matrix. Based on the normalized score matrix, an entropy-based procedure is proposed to derive attribute weights. Furthermore, the additive weighted averaging operator is utilized to fuse all the normalized scores into the overall scores of alternatives, by which the ranking of all the given alternatives is obtained. This paper is concluded by extending the above results to interval-valued intuitionistic fuzzy set theory, and an illustrative example is also provided.
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China(No.17XJA630003).
文摘Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.
文摘From the viewpoint of entropy, this paper investigates a hybrid multiple attribute decision making problem with precision number, interval number and fuzzy number. It defines a new concept: project entropy and the decision is taken according to the values. The validity and scientific nature of the given is proven.
基金supported by the National Natural Science Foundation of China (70771025)the Fundamental Research Funds for the Central Universities of Hohai University (2009B04514)Humanities and Social Sciences Foundations of Ministry of Education of China(10YJA630067)
文摘The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.