In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou...In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.展开更多
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit...As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.展开更多
The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in p...The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.展开更多
Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-G...Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM).展开更多
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu...Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.展开更多
A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a...A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.展开更多
Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by nois...Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by noises and intensity non-uniformity with a huge amount of data needs to be processed regularly,so it is hard to detect convective clouds in satellite image using traditional SVM.To deal with this problem,a novel method for detection of convective clouds was proposed based on fast fuzzy support vector machine(FFSVM).FFSVM was constructed by eliminating feeble samples and designing new membership function as two aspects.Firstly,according to the distribution characteristics of fuzzy inseparable sample set and the fact that the classification hyper-plane is only determined by support vectors,this paper uses SVDD,Gaussian model and border vector extraction model comprehensively to design a sample selection method in three steps,which can eliminate most of redundant samples and keep possible support vectors.Then,by defining adaptive parameters related to attenuation rate and critical membership on the basis of the distribution characteristics of training set,an adaptive membership function is designed.Finally,the FFSVM is trained by the remaining samples using adaptive membership function to detect convective clouds.The experiments on FY-2D satellite images show that the proposed method,compared with traditional FSVM,not only remarkably reduces training time,but also further improves the accuracy of convective clouds detection.展开更多
In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an...In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.展开更多
The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was ...The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage.展开更多
During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid c...During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid construction,the power supply mode and consumption mode of the whole system can be optimized through the accurate short-term load forecasting;and the security,stability and cleanness of the system can be guaranteed.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support v...Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects.展开更多
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi...Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.展开更多
An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.A...An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.An adaptive non-singleton fuzzy support vector machine decision feedback equalizer(ANSFSVMDFE) is also presented,it adopts the non-singleton fuzzy Gaussian kernel function with similar characteristic of pre-filter and is modified with a space transformation based approach.Simulations under nonlinear time variant channels show that ASVM-DFE and ANSFSVM-DFE perform very well on nonlinear equalization and ANSFSVM-DFE acts especially well in resisting abrupt interference.展开更多
基金Project(51176045)supported by the National Natural Science Foundation of ChinaProject(2011ZK2032)supported by the Major Soft Science Program of Science and Technology Ministry of Hunan Province,China
文摘In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.
基金Supported by the National Creative Research Groups Science Foundation of P.R. China (NCRGSFC: 60421002) and National High Technology Research and Development Program of China (863 Program) (2006AA04 Z182)
基金supported by the National Natural Science Foundation of China (61074127)
文摘As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance.
基金supported by the National Natural Science Foundation of China(50576033)
文摘The pruning algorithms for sparse least squares support vector regression machine are common methods, and easily com- prehensible, but the computational burden in the training phase is heavy due to the retraining in performing the pruning process, which is not favorable for their applications. To this end, an im- proved scheme is proposed to accelerate sparse least squares support vector regression machine. A major advantage of this new scheme is based on the iterative methodology, which uses the previous training results instead of retraining, and its feasibility is strictly verified theoretically. Finally, experiments on bench- mark data sets corroborate a significant saving of the training time with the same number of support vectors and predictive accuracy compared with the original pruning algorithms, and this speedup scheme is also extended to classification problem.
基金supported by the National Natural Science Foundation of China (60974082)
文摘Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM).
基金Project(2010CB732004)supported by the National Basic Research Program of ChinaProjects(50934006,41272304)supported by the National Natural Science Foundation of China
文摘Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.
基金Project(50925727) supported by the National Fund for Distinguish Young Scholars of ChinaProject(60876022) supported by the National Natural Science Foundation of China+1 种基金Project(2010FJ4141) supported by Hunan Provincial Science and Technology Foundation,ChinaProject supported by the Fund of the Key Construction Academic Subject (Optics) of Hunan Province,China
文摘A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor.
基金supported in part by the National Natural Science Foundation of China under Grants (61471212)Natural Science Foundation of Zhejiang Province under Grants (LY16F010001)+1 种基金Science and Technology Program of Zhejiang Meteorological Bureau under Grants (2016YB01)Natural Science Foundation of Ningbo under Grants(2016A610091,2017A610297)
文摘Support vector machine(SVM)is easily affected by noises and outliers,and its training time dramatically increases with the growing in number of training samples.Satellite cloud image may easily be deteriorated by noises and intensity non-uniformity with a huge amount of data needs to be processed regularly,so it is hard to detect convective clouds in satellite image using traditional SVM.To deal with this problem,a novel method for detection of convective clouds was proposed based on fast fuzzy support vector machine(FFSVM).FFSVM was constructed by eliminating feeble samples and designing new membership function as two aspects.Firstly,according to the distribution characteristics of fuzzy inseparable sample set and the fact that the classification hyper-plane is only determined by support vectors,this paper uses SVDD,Gaussian model and border vector extraction model comprehensively to design a sample selection method in three steps,which can eliminate most of redundant samples and keep possible support vectors.Then,by defining adaptive parameters related to attenuation rate and critical membership on the basis of the distribution characteristics of training set,an adaptive membership function is designed.Finally,the FFSVM is trained by the remaining samples using adaptive membership function to detect convective clouds.The experiments on FY-2D satellite images show that the proposed method,compared with traditional FSVM,not only remarkably reduces training time,but also further improves the accuracy of convective clouds detection.
基金Project(2003AA430200)supported by the National High Technology Research and Development Program of China
文摘In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way.
基金Project(90923022) supported by the National Natural Science Foundation of ChinaProject(2009220022) supported by Liaoning Science and Technology Foundation,China
文摘The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage.
文摘During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid construction,the power supply mode and consumption mode of the whole system can be optimized through the accurate short-term load forecasting;and the security,stability and cleanness of the system can be guaranteed.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
基金Projects(2013BAB02B01,2013BAB02B03)supported by the National Key Technologies R&D Program of ChinaProjects(41072224,41272347)supported by the National Natural Science Foundation of China
文摘Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects.
基金supported by the National Natural Science Foundation of China(6177202062202433+4 种基金621723716227242262036010)the Natural Science Foundation of Henan Province(22100002)the Postdoctoral Research Grant in Henan Province(202103111)。
文摘Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.
文摘An adaptive support vector machine decision feedback equalizer(ASVM-DFE) based on the least square support vector machine(LS-SVM) is proposed,it solves linear system iteratively with less computational intensity.An adaptive non-singleton fuzzy support vector machine decision feedback equalizer(ANSFSVMDFE) is also presented,it adopts the non-singleton fuzzy Gaussian kernel function with similar characteristic of pre-filter and is modified with a space transformation based approach.Simulations under nonlinear time variant channels show that ASVM-DFE and ANSFSVM-DFE perform very well on nonlinear equalization and ANSFSVM-DFE acts especially well in resisting abrupt interference.