期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Kernel method-based fuzzy clustering algorithm 被引量:2
1
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
基于直觉模糊核聚类的弹道中段目标识别方法 被引量:11
2
作者 范成礼 邢清华 +1 位作者 付强 范学渊 《系统工程与电子技术》 EI CSCD 北大核心 2013年第7期1362-1367,共6页
针对现有的模糊核聚类算法性能的问题,汲取直觉模糊c-均值聚类(intuitionistic fuzzy c-means,IFCM)算法的动态聚类特性优势,引入高斯核函数,改良归一化条件,提出直觉模糊核c-均值聚类(intuitionisticfuzzy kernel c-means,IFKCM)算法,... 针对现有的模糊核聚类算法性能的问题,汲取直觉模糊c-均值聚类(intuitionistic fuzzy c-means,IFCM)算法的动态聚类特性优势,引入高斯核函数,改良归一化条件,提出直觉模糊核c-均值聚类(intuitionisticfuzzy kernel c-means,IFKCM)算法,并通过实际数据测试,证实了该算法的可行性和有效性。最后,根据弹道中段目标识别仿真系统的要求及弹道目标识别的特点,设计并实现了基于直觉模糊核c-均值聚类的弹道中段目标识别(intuitionistic fuzzy kernel c-means-target recognition in ballistic midcourse,IFKCM-TRBM)原型系统,仿真实验及对比分析充分表明该原型系统的稳健可行性,为弹道中段目标识别提出了一种新的参考和尝试。 展开更多
关键词 直觉模糊聚类 模糊核c-均值 高斯核函数 弹道中段 目标识别
在线阅读 下载PDF
基于模糊核加权C-均值聚类的高光谱图像分类 被引量:19
3
作者 赵春晖 齐滨 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第9期2016-2021,共6页
高光谱图像分类是高光谱数据分析的重要研究内容之一。模糊C-均值聚类算法因其算法简单、收敛速度快等优点受到广泛的关注。由于高光谱数据的维数较高,其光谱波段的非线性特性使得传统模糊C-均值聚类算法无法在原始空间得到较好的聚类... 高光谱图像分类是高光谱数据分析的重要研究内容之一。模糊C-均值聚类算法因其算法简单、收敛速度快等优点受到广泛的关注。由于高光谱数据的维数较高,其光谱波段的非线性特性使得传统模糊C-均值聚类算法无法在原始空间得到较好的聚类结果。另外,模糊C-均值聚类算法在计算聚类中心时,仅使用了各样本对聚类中心的隶属度,忽略了样本之间固有存在的空间分布特征。为此提出了模糊核加权C-均值聚类算法,在计算模糊核聚类中心时,根据样本的空间分布特征,为每个样本分配不同的权值,使得每个核聚类中心随着样本的不同而各有不同。标准数据和实际高光谱数据的实验结果均表明,相比较传统模糊C-均值均聚类算法,模糊核加权C-均值聚类算法在总体分类精度上有较大的提高。 展开更多
关键词 聚类分析 模糊核C-均值聚类 非参数加权特征提取 样本空间分布
在线阅读 下载PDF
自适应半监督模糊谱聚类算法 被引量:4
4
作者 戴月明 高倩 《计算机工程与应用》 CSCD 北大核心 2010年第33期212-214,共3页
半监督聚类利用少部分标签的数据辅助大量未标签的数据进行非监督的学习,从而提高聚类的性能。大部分的谱聚类算法都需事先确定聚类数目,利用半监督机器学习技术和自适应聚类算法,解决算法中存在的聚类数目需要事先确定、易陷入局部最... 半监督聚类利用少部分标签的数据辅助大量未标签的数据进行非监督的学习,从而提高聚类的性能。大部分的谱聚类算法都需事先确定聚类数目,利用半监督机器学习技术和自适应聚类算法,解决算法中存在的聚类数目需要事先确定、易陷入局部最优、收敛速度缓慢、对孤立点敏感等缺陷。实验证明该算法有很好的聚类效果。 展开更多
关键词 谱聚类 半监督 自适应 模糊核C-均值(fkcm)
在线阅读 下载PDF
基于核的直觉模糊聚类算法 被引量:3
5
作者 范成礼 雷英杰 《计算机应用》 CSCD 北大核心 2011年第9期2538-2541,共4页
针对现有的直觉模糊聚类算法性能的问题,提出一种基于核的直觉模糊聚类算法(IFKCM)。该算法引入高斯核函数,将直觉模糊集合从原始观察空间映射到高维特征空间,减少了计算时间且提高了聚类精度;同时改进了现有的直觉模糊聚类算法中的概... 针对现有的直觉模糊聚类算法性能的问题,提出一种基于核的直觉模糊聚类算法(IFKCM)。该算法引入高斯核函数,将直觉模糊集合从原始观察空间映射到高维特征空间,减少了计算时间且提高了聚类精度;同时改进了现有的直觉模糊聚类算法中的概率型约束条件,使其对噪声和野值点具有较好的鲁棒性。最后,通过实际数据和人工数据与常用聚类算法进行了对比实验,结果表明该算法较大幅度地提高了直觉模糊聚类算法的性能。 展开更多
关键词 直觉模糊集 直觉模糊聚类 模糊核C-均值 核函数 高斯核函数
在线阅读 下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
6
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy c-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部