The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d...The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.展开更多
The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was need...The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was needed. The relationship can be deduced by virtual of FEM (Finite Element Method ), ANN (Artificial Neural Network) or MRA (Multiple Regression Analysis). MR A is on the basis of a total understanding of the temperature distribution of th e machine tool. Although the more the temperatures measured are, the more accura te the MRA is, too more temperatures will hinder the analysis calculation. So it is necessary to identify the key temperatures of the machine tool. The selectio n of key temperatures decides the efficiency and precision of MRA. Because of th e complexities and multi-input and multi-output structure of the relationships , the exact quantitative portions as well as the unclear portions must be taken into consideration together to improve the identification of key temperatures. I n this paper, a fuzzy cluster analysis was used to select the key temperatures. The substance of identifying the key temperatures is to group all temperatures b y their relativity, and then to select a temperature from each group as the repr esentation. A fuzzy cluster analysis can uncover the relationships between t he thermal field and deformations more truly and thoroughly. A fuzzy cluster ana lysis is the cluster analysis based on fuzzy sets. Given U={u i|i=0,...,N}, in which u i is the temperature measured, a fuzzy matrix R can be obta ined. The transfer close package t(R) can be deduced from R. A fuzzy clu ster of U then conducts on the basis of t(R). Based on the fuzzy cluster analysis discussed above, this paper identified the k ey temperatures of a horizontal machining center. The number of the temperatures measured was reduced to 4 from 32, and then the multiple regression relationshi p models between the 4 temperatures and the thermal deformations of the spindle were drawn. The remnant errors between the regression models and measured deform ations reached a satisfying low level. At the same time, the decreasing of tempe rature variable number improved the efficiency of measure and analysis greatly.展开更多
To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totali...To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.展开更多
文摘The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.
文摘The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was needed. The relationship can be deduced by virtual of FEM (Finite Element Method ), ANN (Artificial Neural Network) or MRA (Multiple Regression Analysis). MR A is on the basis of a total understanding of the temperature distribution of th e machine tool. Although the more the temperatures measured are, the more accura te the MRA is, too more temperatures will hinder the analysis calculation. So it is necessary to identify the key temperatures of the machine tool. The selectio n of key temperatures decides the efficiency and precision of MRA. Because of th e complexities and multi-input and multi-output structure of the relationships , the exact quantitative portions as well as the unclear portions must be taken into consideration together to improve the identification of key temperatures. I n this paper, a fuzzy cluster analysis was used to select the key temperatures. The substance of identifying the key temperatures is to group all temperatures b y their relativity, and then to select a temperature from each group as the repr esentation. A fuzzy cluster analysis can uncover the relationships between t he thermal field and deformations more truly and thoroughly. A fuzzy cluster ana lysis is the cluster analysis based on fuzzy sets. Given U={u i|i=0,...,N}, in which u i is the temperature measured, a fuzzy matrix R can be obta ined. The transfer close package t(R) can be deduced from R. A fuzzy clu ster of U then conducts on the basis of t(R). Based on the fuzzy cluster analysis discussed above, this paper identified the k ey temperatures of a horizontal machining center. The number of the temperatures measured was reduced to 4 from 32, and then the multiple regression relationshi p models between the 4 temperatures and the thermal deformations of the spindle were drawn. The remnant errors between the regression models and measured deform ations reached a satisfying low level. At the same time, the decreasing of tempe rature variable number improved the efficiency of measure and analysis greatly.
文摘To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.