期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
复杂环境下无线传感器节点集群动态调度算法设计
1
作者 刘张榕 许力 《传感技术学报》 北大核心 2025年第6期1127-1132,共6页
在复杂环境下无线传感器节点调度目标选择混乱,导致传感器节点接收到的目标信息存在误差,影响无线传感器节点动态调度精度和网络能耗,为此提出复杂环境下无线传感器节点集群动态调度算法。计算异构集群系统中的计算节点和通信能耗,将总... 在复杂环境下无线传感器节点调度目标选择混乱,导致传感器节点接收到的目标信息存在误差,影响无线传感器节点动态调度精度和网络能耗,为此提出复杂环境下无线传感器节点集群动态调度算法。计算异构集群系统中的计算节点和通信能耗,将总能量损耗作为约束条件。通过应用反转镜技术、Kalman滤波、模糊C均值聚类算法,对传感网络节点的空间环境进行重组和优化。计算节点集群调度的最优化函数,选择合适的集群头节点和数量,考虑节点的距离、速度等重要性因素,确定节点调度任务分配策略,定期调整集群头节点、节点位置,动态调整集群调度策略。仿真结果表明,所提方法集群调度的负载均衡度数值为18.5,节点动态调度精度平均值为85.6%,调度耗时平均值为0.17 ms。 展开更多
关键词 无线传感器 节点动态调度 模糊C均值聚类算法 协同Kalman滤波 集群调度算法
在线阅读 下载PDF
基于分段评价遗传算法的移动机器人路径规划
2
作者 谢嘉 孙帅浩 +3 位作者 李永国 梁锦涛 金昌兵 陈学飞 《传感技术学报》 北大核心 2025年第6期1064-1071,共8页
针对传统遗传算法在处理路径规划问题时存在适应性差、收敛速度慢和易早熟等问题,提出一种基于分段评价路径的改进遗传算法。设计一种动态权重适应度函数,在线调节参数并考虑坡度因素,来增强算法对复杂环境的适应能力;提出一种新的交叉... 针对传统遗传算法在处理路径规划问题时存在适应性差、收敛速度慢和易早熟等问题,提出一种基于分段评价路径的改进遗传算法。设计一种动态权重适应度函数,在线调节参数并考虑坡度因素,来增强算法对复杂环境的适应能力;提出一种新的交叉变异方式,分段评价个体后进行有选择性的交叉和变异,提升算法的寻优能力,加快收敛速度;采用模糊控制在线调节交叉变异概率,避免算法早熟;引入删除算子剔除冗余节点,提高最优解的平滑性;在20×20和30×30地图环境上进行仿真实验,结果表明所提算法具有更强的适应能力,改进型交叉变异能更快地搜索到更优路径,在线调节交叉变异概率很好地避免了算法早熟,最终解在路径长度、收敛速度及平滑度上均有提升。 展开更多
关键词 路径规划 分段评价路径 改进遗传算法 动态权重适应度函数 选择性交叉变异 模糊控制
在线阅读 下载PDF
基于属性权重的Fuzzy C Mean算法 被引量:46
3
作者 王丽娟 关守义 +1 位作者 王晓龙 王熙照 《计算机学报》 EI CSCD 北大核心 2006年第10期1797-1803,共7页
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC... 提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论. 展开更多
关键词 梯度递减算法 fuzzy C Mean算法 属性权重学习算法 聚类有效性函数
在线阅读 下载PDF
基于动态联合加权的带钢表面缺陷分类方法
4
作者 王亚 甘青松 +4 位作者 沈琦 宋余庆 刘毅 韩凯 刘哲 《计算机工程》 北大核心 2025年第6期286-296,共11页
带钢表面质量是衡量钢铁产品质量的重要指标之一,针对全流程表面缺陷进行分类研究,可以减少表面缺陷的发生,同时提升表面缺陷信息捕获的准确性。在实际生产过程中,带钢缺陷样本的精准类别标签往往难以获取,因此不依赖标签数据的无监督... 带钢表面质量是衡量钢铁产品质量的重要指标之一,针对全流程表面缺陷进行分类研究,可以减少表面缺陷的发生,同时提升表面缺陷信息捕获的准确性。在实际生产过程中,带钢缺陷样本的精准类别标签往往难以获取,因此不依赖标签数据的无监督分类方法逐渐成为研究热点。现有的传统机器学习无监督分类方法对噪声数据鲁棒性差,而基于深度学习的无监督方法对数据量依赖性较强。为此,将传统的机器学习算法和深度学习算法相结合,提出一种无监督动态加权联合的带钢表面缺陷分类(DWJC)方法。首先,根据纹理特征聚类算法为缺陷图像分配初始类别标签;然后,通过卷积神经网络(CNN)提取图像的深度特征;最后,基于KL散度提出一种动态加权重标注方法,联合初始类别标签、Softmax、约束聚类等多个分类方法,在模型训练过程中不断修正初始类别标签,以获取更加稳定且精准的缺陷分类结果。在NEU公共数据集和上海宝钢缺陷数据集上进行大量实验,结果表明,DWJC分别取得了99.5%和94.3%的平均精度。 展开更多
关键词 表面缺陷分类 无监督分类 纹理特征 聚类算法 动态权重
在线阅读 下载PDF
基于自适应动态特征加权的K-means算法
5
作者 薛雷 王天放 《吉林大学学报(理学版)》 北大核心 2025年第5期1404-1410,共7页
首先,针对传统K-means算法在处理高维异构数据时存在特征平等假设导致重要特征被忽视、聚类结果对预设簇数高度敏感以及对初始中心点选择强依赖性的问题,提出一种自适应动态特征加权K-means(adaptive dynamic feature weighting K-means... 首先,针对传统K-means算法在处理高维异构数据时存在特征平等假设导致重要特征被忽视、聚类结果对预设簇数高度敏感以及对初始中心点选择强依赖性的问题,提出一种自适应动态特征加权K-means(adaptive dynamic feature weighting K-means,ADFW-K-means)算法,该算法融合了动态特征加权、K-means++优化初始化、肘部法则辅助簇数选择、空簇处理机制以及自适应簇数调整策略等多项技术.其次,在吉林大学20222024年选调生数据集上进行实验,实验结果表明,ADFW-K-means算法相较于传统聚类算法,在轮廓系数、聚类稳定性和业务可解释性3个核心指标上均得到显著提升,ADFW-K-means算法有效克服了传统方法的固有缺陷,显著提升了复杂高维异构数据聚类的准确性和鲁棒性. 展开更多
关键词 自适应簇数 动态特征加权 K-MEANS算法 聚类算法
在线阅读 下载PDF
Improved method for the feature extraction of laser scanner using genetic clustering 被引量:6
6
作者 Yu Jinxia Cai Zixing Duan Zhuohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期280-285,共6页
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b... Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated. 展开更多
关键词 laser scanner feature extraction weighted fuzzy clustering validation index genetic algorithm.
在线阅读 下载PDF
基于多因素均衡动态分簇的WSN路由协议算法 被引量:2
7
作者 朱本科 高丙朋 蔡鑫 《科学技术与工程》 北大核心 2024年第16期6799-6808,共10页
为了解决无线传感器网络分簇路由协议随机筛选簇头节点的位置分布不均衡及转发节点的数据传输路径不合理会加剧节点能量消耗、缩短网络生存周期的问题,提出一种基于改进社交网络搜索(improved social network search, ISNS)算法优化模糊... 为了解决无线传感器网络分簇路由协议随机筛选簇头节点的位置分布不均衡及转发节点的数据传输路径不合理会加剧节点能量消耗、缩短网络生存周期的问题,提出一种基于改进社交网络搜索(improved social network search, ISNS)算法优化模糊C均值聚类(fuzzy C-means, FCM)的多因素均衡动态分簇路由协议(multi-factor balanced dynamic clustering routing protocol, MD-LEACH)。首先,引入莱维飞行改进反向精英学习策略,以增强社交网络搜索算法的全局寻优能力;接着,使用ISNS优化模糊C均值聚类算法对网络节点动态均匀分簇,均衡网络负载;此外,在每个簇内,考虑簇内节点的能量因素和位置因素引入模糊推理,设计两种簇头选取模式,动态选举簇首,提高簇首质量。在稳定传输阶段,将单跳改为簇首之间的通信的方式,使用改进的蚁群算法寻找最优数据传输路径,提高能量效率。仿真结果表明,算法能够有效提高能量效率,平衡网络负载,延长网络生存期。 展开更多
关键词 改进社交网络搜索(ISNS)算法 模糊C均值聚类(FCM) 莱维飞行 多因素均衡 动态分簇 模糊推理
在线阅读 下载PDF
基于遗传粒子群动态聚类算法的物流柔性分拣系统品规分配 被引量:1
8
作者 杜佳奇 杨旭东 +2 位作者 孙栋 张磊 王晋冰 《包装工程》 CAS 北大核心 2024年第5期126-134,共9页
目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态... 目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态聚类(GAPSO-K)算法进行求解。首先,结合各品规分拣量对品规相似系数进行改进,并将其作为适应度函数;然后在粒子群算法中对惯性权重因子进行改进,使其值可以进行自适应改变;最后,在粒子群动态聚类算法中引入遗传算法中的交叉变异扩大解的搜索范围,基于Matlab对文中的其他算法进行求解对比,求得结果在EM-plant中进行仿真验证。结果结合某烟草物流配送中心数据仿真验证,利用GAPSO-K算法处理订单的时间为234.5 s,较传统时间大幅度较少,有效提升了柔性物流分拣效率。结论采用该算法可充分发挥2种算法的优良性,具有更好的收敛性及寻优性,为柔性物流品规分配提供了新思路。 展开更多
关键词 品规分配 品规相似系数 惯性权重因子 遗传粒子群动态聚类算法
在线阅读 下载PDF
跟驰工况下考虑风险分布的驾驶风格分类 被引量:1
9
作者 姜平 范虹慧 +2 位作者 黄鹤 石琴 周宇 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第11期1514-1518,共5页
车辆跟驰工况下,为通过驾驶场景中各因素的风险分布研究驾驶员特性,实现车路交互下的驾驶风格分类,文章提出一种基于改进的模糊综合评价法的驾驶风格分类方法。通过驾驶模拟器采集试验数据,并将车辆行驶参数和安全势场作为分类的特征参... 车辆跟驰工况下,为通过驾驶场景中各因素的风险分布研究驾驶员特性,实现车路交互下的驾驶风格分类,文章提出一种基于改进的模糊综合评价法的驾驶风格分类方法。通过驾驶模拟器采集试验数据,并将车辆行驶参数和安全势场作为分类的特征参数;使用组合权重法对模糊综合评价法的权重集进行改进,从而对各特征参数赋予相应的权重,再通过改进的模糊综合评价法将驾驶风格分为冷静型、普通型、激进型3类;最后通过K-means聚类算法验证上述方法的合理性。改进的模糊综合评价法分类结果与K-means聚类结果的对比表明,两者的差异率仅为2%,且当聚类簇数为3时,轮廓系数高达0.685,即与无监督学习算法相同。研究结果表明,使用该文模糊综合评价法可以实现对驾驶风格的有效分类。 展开更多
关键词 驾驶风格分类 安全势场 模糊综合评价法 组合权重法 K-MEANS聚类算法
在线阅读 下载PDF
基于动态惯性权重的电子节气门改进PSO-BP优化控制 被引量:1
10
作者 孙建民 杨世虎 +1 位作者 赵磊 姚德臣 《现代制造工程》 CSCD 北大核心 2024年第2期45-52,共8页
针对汽车电子节气门系统存在的动态迟滞非线性问题,提出一种模糊神经网络PID控制器的设计方法。该控制器将动态调整惯性权重的粒子群优化算法和BP算法结合来优化模糊神经网络参数,修正模糊神经网络在寻优过程中收敛缓慢、易陷入局部最... 针对汽车电子节气门系统存在的动态迟滞非线性问题,提出一种模糊神经网络PID控制器的设计方法。该控制器将动态调整惯性权重的粒子群优化算法和BP算法结合来优化模糊神经网络参数,修正模糊神经网络在寻优过程中收敛缓慢、易陷入局部最小值的不足。利用模糊神经网络的自学习能力,对PID控制器参数进行整定。仿真结果表明,经过优化后的模糊神经网络PID控制器相比于模糊PID控制器在响应时间、超调量和振荡次数等方面都有显着提升。在模拟气流扰动工况施加扰动信号后,该控制器表现出良好的抗干扰性能。在电子节气门响应试验中,节气门响应曲线存在轻微超调,但稳态误差较小,表明该控制方法下电子节气门具有良好的动态响应特性。 展开更多
关键词 动态惯性权重 电子节气门 迟滞非线性 改进粒子群优化算法 模糊神经网络
在线阅读 下载PDF
模糊c-均值聚类算法中加权指数m的研究 被引量:160
11
作者 高新波 裴继红 谢维信 《电子学报》 EI CAS CSCD 北大核心 2000年第4期80-83,共4页
加权指数m是模糊c 均值 (FCM)聚类算法中的一个重要参数 .本文从FCM算法出发研究了m对聚类分析的影响 ,m的最佳选取方法及其在聚类有效性中的应用三个问题 .实验结果表明 :m不合适的取值将严重影响算法的性能 ;在实际应用中m的最佳取值... 加权指数m是模糊c 均值 (FCM)聚类算法中的一个重要参数 .本文从FCM算法出发研究了m对聚类分析的影响 ,m的最佳选取方法及其在聚类有效性中的应用三个问题 .实验结果表明 :m不合适的取值将严重影响算法的性能 ;在实际应用中m的最佳取值范围为 [1 5 ,2 5 ],这与Pal的实验结论相一致 ;另外基于最优加权指数m 展开更多
关键词 加权指数 模糊聚类 模式识别
在线阅读 下载PDF
基于自适应模糊C均值算法的电力负荷分类研究 被引量:67
12
作者 杨浩 张磊 +1 位作者 何潜 牛强 《电力系统保护与控制》 EI CSCD 北大核心 2010年第16期111-115,122,共6页
针对当前负荷建模中存在的负荷时变性问题,提出了基于自适应模糊C均值聚类的电力负荷动特性分类方法。探讨了聚类分析方法在负荷动特性分类中的应用,包括聚类特征向量的选取和分类方法研究两个方面。对原始模糊C均值聚类算法中的聚类数... 针对当前负荷建模中存在的负荷时变性问题,提出了基于自适应模糊C均值聚类的电力负荷动特性分类方法。探讨了聚类分析方法在负荷动特性分类中的应用,包括聚类特征向量的选取和分类方法研究两个方面。对原始模糊C均值聚类算法中的聚类数c进行了研究,在原始算法中融入新的聚类有效性函数,对算法进行了改进,改进算法不需要预先选择类的数目作为先验值。通过动模实验数据的负荷分类实例,表明该方法可自动获取最佳分类数,且分类效果要好于原始算法。 展开更多
关键词 电力负荷 模糊C均值算法 自适应 动态特性聚类 负荷建模
在线阅读 下载PDF
基于改进小生境遗传算法的电力系统无功优化 被引量:100
13
作者 崔挺 孙元章 +1 位作者 徐箭 黄磊 《中国电机工程学报》 EI CSCD 北大核心 2011年第19期43-50,共8页
针对电力系统无功优化问题,提出一种改进小生境遗传算法来克服小生境遗传算法中小生境难以确定的不足,改善遗传算法容易陷入局部收敛和早熟的缺点。通过模糊动态聚类分析方法实现小生境群体的划分,然后利用适应度共享技术对小生境内个... 针对电力系统无功优化问题,提出一种改进小生境遗传算法来克服小生境遗传算法中小生境难以确定的不足,改善遗传算法容易陷入局部收敛和早熟的缺点。通过模糊动态聚类分析方法实现小生境群体的划分,然后利用适应度共享技术对小生境内个体适应度进行调整,以提高全局寻优能力。提出和运用隔代小生境共享机制、最优个体邻域搜索及保留策略等以提高算法的计算速度和收敛速度。通过对IEEE 57节点测试系统进行无功优化计算及结果分析,说明所提出算法的全局搜索能力强、效率高,能得到较好的结果。 展开更多
关键词 电力系统 无功优化 遗传算法 小生境 模糊动态聚类 适应度共享
在线阅读 下载PDF
点密度函数加权模糊C-均值算法的聚类分析 被引量:30
14
作者 刘小芳 曾黄麟 吕炳朝 《计算机工程与应用》 CSCD 北大核心 2004年第24期64-65,96,共3页
基于模糊C-均值算法具有对数据集进行等划分趋势的缺陷,文章利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种新的加权模糊C-均值算法,该方法不仅在一定程度上克服了模糊C-均值算法的缺陷,而且具有良好的收敛性。
关键词 模糊C-均值算法 点密度函数 加权 模糊聚类分析
在线阅读 下载PDF
基于加权模糊c均值聚类与统计检验指导的多阈值图像自动分割算法 被引量:49
15
作者 高新波 李洁 姬红兵 《电子学报》 EI CAS CSCD 北大核心 2004年第4期661-664,共4页
图像分割是计算机视觉中一个重要的研究课题.本文提出一种基于直方图的多阈值灰度图像自动分割方法,该方法利用加权模糊c-均值聚类算法快速实现分割过程,同时通过单峰统计检验指导来自动确定多阈值的合适数目.实验结果表明了该方法的有... 图像分割是计算机视觉中一个重要的研究课题.本文提出一种基于直方图的多阈值灰度图像自动分割方法,该方法利用加权模糊c-均值聚类算法快速实现分割过程,同时通过单峰统计检验指导来自动确定多阈值的合适数目.实验结果表明了该方法的有效性. 展开更多
关键词 图像分割 聚类分析 加权模糊c-均值算法 统计检验
在线阅读 下载PDF
一种新的动态聚类算法及其在热工过程模糊建模中的应用 被引量:29
16
作者 朱红霞 沈炯 李益国 《中国电机工程学报》 EI CSCD 北大核心 2005年第7期34-40,共7页
文中提出的新型动态进化聚类算法克服了传统模糊聚类建模算法须事先确定规则数的缺陷。它通过改进的遗传策略来优化染色体长度,以实现对聚类个数进行全局寻优;同时,利用FCM算法加快了聚类中心参数的收敛;此外,通过引入免疫系统的记忆功... 文中提出的新型动态进化聚类算法克服了传统模糊聚类建模算法须事先确定规则数的缺陷。它通过改进的遗传策略来优化染色体长度,以实现对聚类个数进行全局寻优;同时,利用FCM算法加快了聚类中心参数的收敛;此外,通过引入免疫系统的记忆功能和疫苗接种机理,新算法得以快速稳定地收敛到最优解。利用这种高效的动态聚类算法辨识模糊模型,可以同时得到合适的模糊规则数和准确的前提参数。仿真实例验证了文中动态模糊聚类建模算法的有效性,将其应用于热工过程可获得高精度的非线性模糊模型。 展开更多
关键词 热工过程 模糊建模 线性模型 动态聚类算法 遗传算法 免疫进化算法
在线阅读 下载PDF
动态加权模糊核聚类算法 被引量:5
17
作者 李颖 李传龙 +1 位作者 马龙 于水明 《计算机工程与设计》 CSCD 北大核心 2009年第24期5584-5587,共4页
为了克服噪声特征向量对聚类的影响,充分考虑各特征向量对聚类结果的贡献度的不同,运用mercer核将待聚类的数据映射到高维空间,提出了一种新的动态加权模糊核聚类算法。该算法运用动态加权,自动消弱噪声特征向量在分类中的作用,在对数... 为了克服噪声特征向量对聚类的影响,充分考虑各特征向量对聚类结果的贡献度的不同,运用mercer核将待聚类的数据映射到高维空间,提出了一种新的动态加权模糊核聚类算法。该算法运用动态加权,自动消弱噪声特征向量在分类中的作用,在对数据没有任何先验信息的情况下,不仅能够准确划分线性数据,而且能够做到非线性划分非团状数据。仿真和实际数据分类结果表明,数据中的噪声对分类结果影响较小,该算法具有很高的实用性。 展开更多
关键词 模糊聚类 非团状数据 加权模糊核聚类 核函数 非线性划分
在线阅读 下载PDF
基于数据加权策略的模糊C均值聚类算法 被引量:13
18
作者 周世波 徐维祥 柴田 《系统工程与电子技术》 EI CSCD 北大核心 2014年第11期2314-2319,共6页
针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把... 针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把样本点的密度值作为该点的权值,对聚类中心进行调整,突出高密度样本点在聚类中心调整中的影响力,从而达到提高聚类效果的目的。人造数据集和加州大学欧文分校(University of California-Irvine,UCI)真实数据集的实验结果表明,在不提高时间复杂度的同时,与FCM算法相比,基于数据加权策略的FCM算法聚类的准确率更高。 展开更多
关键词 模糊聚类 模糊C均值算法 数据加权
在线阅读 下载PDF
基于并行免疫遗传算法基因表达数据的动态模糊聚类 被引量:8
19
作者 郑明 刘桂霞 +3 位作者 周春光 王晗 郑小红 李艳文 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第1期63-68,共6页
提出一种改进的并行免疫遗传算法,通过在群体规模上引入"岛"的概念,实现了可变的群体规模;通过在适应度函数内引入免疫算子,避免了算法过早收敛.因此,解决了寻优算法中局部收敛的困扰,提高了获得全局最优解的几率.把此算法应... 提出一种改进的并行免疫遗传算法,通过在群体规模上引入"岛"的概念,实现了可变的群体规模;通过在适应度函数内引入免疫算子,避免了算法过早收敛.因此,解决了寻优算法中局部收敛的困扰,提高了获得全局最优解的几率.把此算法应用于斯坦福大学酵母细胞周期表达数据库的数据进行共表达聚类,并将实验结果与Spellman按照功能基因组学进行聚类所得结果进行了对比,证明了所给算法在功能基因组学聚类上的有效性. 展开更多
关键词 动态模糊聚类 并行免疫遗传算法 免疫算子 岛屿
在线阅读 下载PDF
基于特征加权理论的数据聚类算法 被引量:40
20
作者 费贤举 李虹 田国忠 《沈阳工业大学学报》 EI CAS 北大核心 2018年第1期77-81,共5页
针对数据挖掘过程中数据聚类操作的初始聚类数目和初始聚类中心确定困难的问题,提出了一种软子空间结合竞争合并机制的模糊加权聚类算法.通过对软子空间聚类算法的目标函数进行改写,并结合数据簇势的大小对各数据簇进行竞争与合并操作,... 针对数据挖掘过程中数据聚类操作的初始聚类数目和初始聚类中心确定困难的问题,提出了一种软子空间结合竞争合并机制的模糊加权聚类算法.通过对软子空间聚类算法的目标函数进行改写,并结合数据簇势的大小对各数据簇进行竞争与合并操作,实现了对数据的聚类处理.结果表明,该算法能够准确地对数据样本进行聚类,并且聚类结果与初始数据簇数目和初始聚类中心无关,能够满足对高维数据聚类处理的需要,具有较好的实际应用价值. 展开更多
关键词 数据挖掘 数据聚类 特征加权 软子空间聚类 竞争合并机制 模糊聚类算法 聚类中心 聚类数目
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部