A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to mode...The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to model the C41SR architecture. The paper presents an approach to modeling the capability requirements with the fuzzy unified modeling language (UML) and building domain ontologies with fuzzy description logic (DL). The UML modeling constructs are extended according to the meta model of Depart- ment of Defense Architecture Framework to improve their domain applicability, the fuzzy modeling mechanism is introduced to model the fuzzy efficiency features of capabilities, and the capability requirement models are converted into ontologies formalized in fuzzy DL so that the model consistency and reasonability can be checked with a DL reasoning system. Finally, a case study of C41SR capability requirements model checking is provided to demonstrate the availability and applicability of the method.展开更多
Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted con...Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.展开更多
A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to oper...A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.展开更多
Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighte...Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.展开更多
Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuz...Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy.展开更多
The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to s...The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the new algorithm has a great advantage over the basic"current"statistical model and adaptive algorithm.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and s...Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and scheduling, especially in simulation where accurate mathematical models can not or very hard be established. In this paper, to meet the demands of fuzzy simulation, two fuzzy nets will first be presented, which are quite suitable for modeling the parallel or concurrent systems with fuzzy behavior. Then, a concept of active simulation will be introduced, in which the simulation model not only can show its fuzzy behavior, but also has a certain ability which can actively perform many very useful actions, such as automatic warning, realtime monitoring, simulation result checking, simulation model self-adapting, error recovery, simulating path tracing, system states inspecting and exception handling, by a unified approach while some specified events occur. The simulation model described by this powerful simulation modeling tool is concurrently driven by a network interpreter and an event monitor that all can be implemented by software or hardware. Besides, some interesting applications are given in the paper.展开更多
The control strategy of the model travel tracking for the vehicle suspension sys tem is presented based on analyzing the responses of the vehicle suspension tra vel. A fuzzy control system of vehicle suspension is des...The control strategy of the model travel tracking for the vehicle suspension sys tem is presented based on analyzing the responses of the vehicle suspension tra vel. A fuzzy control system of vehicle suspension is designed, in which the sus pension travel output of the adaptive LQG control system is taken as the tracking objective. The simulation results prove that the suspension travel and vertical acceleration can be tracked simultaneously with the simple fuzzy controller, and the tracking effect of fuzzy control is better than that of the PID controller.展开更多
Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this ...Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.展开更多
This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is va...This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.展开更多
巡检机器人在风载荷作用下会发生一定的摆动,从而导致巡检结果准确性和可靠性降低,参考旋翼类飞行器设计了巡检机器人在风载荷下的平衡机构.首先,利用电机的动力学方程推导电机电压和转速之间的传递函数,使用叶素法建立旋翼产生的升力...巡检机器人在风载荷作用下会发生一定的摆动,从而导致巡检结果准确性和可靠性降低,参考旋翼类飞行器设计了巡检机器人在风载荷下的平衡机构.首先,利用电机的动力学方程推导电机电压和转速之间的传递函数,使用叶素法建立旋翼产生的升力与旋翼转速之间的关系,从而建立平衡机构的输入电压和输出升力之间的联系.其次,分析不同方向的风载荷对巡检机器人工作状态的影响,建立了巡检机器人在横向风载荷下的摆动数学模型.最后,将模糊PID(proportional integral derivative)应用于平衡机构的控制中,开展了巡检机器人的数值仿真和样机实验.结果表明:所设计的平衡机构可以有效抑制巡检机器人在风载荷中的摆动.展开更多
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
文摘The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to model the C41SR architecture. The paper presents an approach to modeling the capability requirements with the fuzzy unified modeling language (UML) and building domain ontologies with fuzzy description logic (DL). The UML modeling constructs are extended according to the meta model of Depart- ment of Defense Architecture Framework to improve their domain applicability, the fuzzy modeling mechanism is introduced to model the fuzzy efficiency features of capabilities, and the capability requirement models are converted into ontologies formalized in fuzzy DL so that the model consistency and reasonability can be checked with a DL reasoning system. Finally, a case study of C41SR capability requirements model checking is provided to demonstrate the availability and applicability of the method.
基金work supported by Changwon National University in 2011-2012work partly supported by the second stage of Brain Korea 21 Projects
文摘Ship-mounted container cranes are challenging industrial applications of nonlinear pendulum-like systems with oscillating disturbance which can cause them unstable.Since wave-induced ship motion causes the hoisted container to swing during the transfer operation,the swing motion may be dangerously large and the operation must be stopped.In order to reduce payload pendulation of ship-mounted crane,nonlinear dynamics of ship-mounted crane is derived and a control method using T-S fuzzy model is proposed.Simulation results are given to illustrate the validity of the proposed design method and pendulation of ship-mounted crane is reduced significantly.
文摘A design method is presented for Takagi-Sugeno (T-S) fuzzy model based nonlinear sliding model controller. First, the closed-loop fuzzy system is divided into a set of dominant local linear systems according to operating sub-regions. In each sub-region the fuzzy system consists of nominal linear system and a group of interacting systems. Then the controller composed two parts is designed. One part is designed to control the nominal system, the other is designed to control the interacting systems with sliding mode theory. The proposed controller can improve the robusmess and gnarantee tracking performance of the fuzzy system. Stability is guaranteed without finding a common positive definite matrix.
基金supported by the National Natural Science Foundation of China(61863034)。
文摘Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61309022)
文摘Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy.
文摘The basic"current"statistical model and adaptive Kalman filter algorithm can not track a weakly maneuvering target precisely,though it has good estimate accuracy for strongly maneuvering target.In order to solve this problem,a novel nonlinear fuzzy membership function was presented to adjust the upper and lower limit of target acceleration adaptively,and then the validity of the new algorithm for feeblish maneuvering target was proved in theory.At last,the computer simulation experiments indicated that the new algorithm has a great advantage over the basic"current"statistical model and adaptive algorithm.
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
文摘Fuzzy technology is a newly developed discipline based on fuzzy mathematics. In the recent years, it has been successfully applied into many areas, such as process control, diagnosis, evaluation, decision making and scheduling, especially in simulation where accurate mathematical models can not or very hard be established. In this paper, to meet the demands of fuzzy simulation, two fuzzy nets will first be presented, which are quite suitable for modeling the parallel or concurrent systems with fuzzy behavior. Then, a concept of active simulation will be introduced, in which the simulation model not only can show its fuzzy behavior, but also has a certain ability which can actively perform many very useful actions, such as automatic warning, realtime monitoring, simulation result checking, simulation model self-adapting, error recovery, simulating path tracing, system states inspecting and exception handling, by a unified approach while some specified events occur. The simulation model described by this powerful simulation modeling tool is concurrently driven by a network interpreter and an event monitor that all can be implemented by software or hardware. Besides, some interesting applications are given in the paper.
基金Sponsored by Ministerial Level Equipment Pre-research Foundation(623010202 .4)
文摘The control strategy of the model travel tracking for the vehicle suspension sys tem is presented based on analyzing the responses of the vehicle suspension tra vel. A fuzzy control system of vehicle suspension is designed, in which the sus pension travel output of the adaptive LQG control system is taken as the tracking objective. The simulation results prove that the suspension travel and vertical acceleration can be tracked simultaneously with the simple fuzzy controller, and the tracking effect of fuzzy control is better than that of the PID controller.
基金National Natural Science Foundation of china(60274014,60574088)
文摘Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.
基金Supported by National Natural Science Foundation of P. R. China (60273028)
文摘This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.
文摘巡检机器人在风载荷作用下会发生一定的摆动,从而导致巡检结果准确性和可靠性降低,参考旋翼类飞行器设计了巡检机器人在风载荷下的平衡机构.首先,利用电机的动力学方程推导电机电压和转速之间的传递函数,使用叶素法建立旋翼产生的升力与旋翼转速之间的关系,从而建立平衡机构的输入电压和输出升力之间的联系.其次,分析不同方向的风载荷对巡检机器人工作状态的影响,建立了巡检机器人在横向风载荷下的摆动数学模型.最后,将模糊PID(proportional integral derivative)应用于平衡机构的控制中,开展了巡检机器人的数值仿真和样机实验.结果表明:所设计的平衡机构可以有效抑制巡检机器人在风载荷中的摆动.