期刊文献+
共找到1,878篇文章
< 1 2 94 >
每页显示 20 50 100
基于超像素的改进FCM电力设备红外图像分割
1
作者 吴晓君 余显喆 +2 位作者 王鹏 赵鹤 李天成 《红外技术》 北大核心 2025年第2期235-242,共8页
针对传统模糊C均值(FCM)算法在图像分割中存在分割精度低、收敛速度慢、对初始聚类中心选取不佳而陷入局部最优等问题,提出一种适用于电力设备红外图像的基于超像素的改进FCM分割方法。首先,采用多特征融合的简单非迭代聚类(SNIC)超像... 针对传统模糊C均值(FCM)算法在图像分割中存在分割精度低、收敛速度慢、对初始聚类中心选取不佳而陷入局部最优等问题,提出一种适用于电力设备红外图像的基于超像素的改进FCM分割方法。首先,采用多特征融合的简单非迭代聚类(SNIC)超像素算法对图像进行预分割,用超像素代替像素表达图像特征,降低后续处理复杂度;其次,运用最大类间方差的思想,选取类间方差最大时灰度直方图最大值对应的灰度值作为改进算法的初始聚类中心,避免生成局部最优解;最后,将多特征融合的SNIC算法与FCM算法结合,实现电力设备红外图像分割。实验结果表明:该算法在设备轮廓和局部高温区域的分割上改善了对比算法存在的欠分割现象,提升了运算效率,为后期电力设备故障诊断奠定基础。 展开更多
关键词 红外图像 模糊c均值聚类 超像素 初始聚类中心
在线阅读 下载PDF
基于空间邻域复杂度和直觉模糊集的FCM图像分割算法
2
作者 韩玉兰 曹晓峰 徐寒 《计算机应用与软件》 北大核心 2025年第5期198-202,216,共6页
模糊C-均值(FCM)算法进行图像分割时只考虑像素的灰度信息,忽略了像素的邻域信息,导致分割结果不准确。针对此问题,该文考虑图像像素间的分布特征和相互影响设计一个复杂度,复杂度的设计是为了增加像素空间邻域信息在算法中所占权重。... 模糊C-均值(FCM)算法进行图像分割时只考虑像素的灰度信息,忽略了像素的邻域信息,导致分割结果不准确。针对此问题,该文考虑图像像素间的分布特征和相互影响设计一个复杂度,复杂度的设计是为了增加像素空间邻域信息在算法中所占权重。将此复杂度信息融入FCM算法中;结合直觉模糊集理论引入犹豫度和非隶属度,完善图像中的不确定信息,优化隶属度矩阵。实验结果表明,该算法弱化了噪声对图像的影响,对边缘细节的处理具有更强的鲁棒性。 展开更多
关键词 像素相似性 复杂度 直觉模糊集 模糊c均值
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:1
3
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 聚类分析 隐私保护 本地差分隐私 模糊c均值聚类 拉普拉斯机制
在线阅读 下载PDF
Fuzzy c-means clustering based on spatial neighborhood information for image segmentation 被引量:15
4
作者 Yanling Li Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期323-328,共6页
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im... Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm. 展开更多
关键词 image segmentation fuzzy c-means spatial informa- tion. robust.
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
5
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
基于FCM和CNN-BiLSTM-MHA的矿用带式输送机健康状态评估
6
作者 孙琪雅 袁逸萍 +1 位作者 张润泽 陈彩凤 《机床与液压》 北大核心 2025年第7期201-206,共6页
受频繁启停机、负载突变等影响,带式输送机监测数据存在大量噪声、异常值和空值等,从而无法准确表征其运行状态。提出一种基于FCM聚类算法和CNN-BiLSTM-MHA模型的健康状态评估方法。对采集到的多传感器数据,利用动态时间规整进行预处理... 受频繁启停机、负载突变等影响,带式输送机监测数据存在大量噪声、异常值和空值等,从而无法准确表征其运行状态。提出一种基于FCM聚类算法和CNN-BiLSTM-MHA模型的健康状态评估方法。对采集到的多传感器数据,利用动态时间规整进行预处理,采取自适应特征融合方法将降维后的健康指标进行融合;利用FCM聚类分析设备全生命周期退化数据,划分其健康状态;将划分好健康状态的数据输入CNN-BiLSTM-MHA模型进行训练,得到最终的健康状态评估结果。实验结果表明:与CNN和CNN-BiLSTM模型相比,CNN-BiLSTM-MHA模型在准确率、精确率、召回率和F1分数这4个评价指标上表现更优。 展开更多
关键词 关矿用带式输送机 健康状态评估 多传感器融合 模糊c均值聚类 cNN-BiLSTM-MHA
在线阅读 下载PDF
基于VMD和FCM聚类算法的海上风机支撑结构损伤识别方法
7
作者 任义建 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 北大核心 2025年第8期184-191,286,共9页
利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzz... 利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzzy C-means,FCM)聚类算法进行海上风机支撑结构损伤识别。为剔除响应中的谐波成分,首先利用VMD对加速度响应进行分解,选取结构模态响应(仅含有结构自振频率)作为分析信号。然后计算模态响应的时域、能量和能量比值及样本熵特征构造特征矩阵,利用主成分分析对特征矩阵进行降维,得到损伤特征矩阵。将损伤特征矩阵输入FCM聚类算法,通过聚类分析得到结构的损伤状态。位移激励下海上风机支撑结构损伤识别模型试验数据验证了该方法的有效性。该方法属于无监督学习算法,无需标注标签且不受谐波成分的影响。 展开更多
关键词 海上风机支撑结构 损伤识别 变分模态分解(VMD) 模糊c均值(FcM)聚类算法 无监督学习算法
在线阅读 下载PDF
基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法
8
作者 魏伟 余鹤 +1 位作者 叶利 汪应春 《中国电力》 北大核心 2025年第6期172-179,共8页
现有光伏功率预测的方法在应对低压台区分布式光伏时,存在初始数据过于冗余、预测特征提取困难,进而导致预测精度不足的问题。提出一种基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法。首先,利用模糊C均值聚类算法(fuzzy cmeans,F... 现有光伏功率预测的方法在应对低压台区分布式光伏时,存在初始数据过于冗余、预测特征提取困难,进而导致预测精度不足的问题。提出一种基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法。首先,利用模糊C均值聚类算法(fuzzy cmeans,FCM)充分挖掘多源气象环境数据,将初始数据集以不同天气进行聚类,降低初始数据冗余度;其次,将压缩和激励网络(squeeze-and-excitation networks,SENet)融入时间卷积网络(temporal convolutional network,TCN),高效提取复杂特征并提高预测精度;最后,应用平均绝对百分比误差和均方根误差作为评价指标,对预测结果进行评估。仿真结果表明:所提预测方法可以充分利用初始气象数据,能够针对低压台区分布式光伏发电机组出力特点,做出更为精确的超短期功率预测。 展开更多
关键词 低压台区 光伏功率预测 模糊c均值聚类
在线阅读 下载PDF
基于非局部信息和子空间的模糊C有序均值聚类的图像分割算法
9
作者 陈阳 黄成泉 +3 位作者 覃小素 彭家磊 雷欢 周丽华 《计算机辅助设计与图形学学报》 北大核心 2025年第3期506-518,共13页
针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图... 针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法. 展开更多
关键词 非局部空间信息 子空间聚类 模糊c有序均值聚类 噪声图像分割 鲁棒性
在线阅读 下载PDF
基于属性权重的Fuzzy C Mean算法 被引量:46
10
作者 王丽娟 关守义 +1 位作者 王晓龙 王熙照 《计算机学报》 EI CSCD 北大核心 2006年第10期1797-1803,共7页
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC... 提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论. 展开更多
关键词 梯度递减算法 fuzzy c Mean算法 属性权重学习算法 聚类有效性函数
在线阅读 下载PDF
AHP-Fuzzy法评估C^4ISR系统作战效能中的应用 被引量:3
11
作者 肖慧鑫 王静滨 +1 位作者 崔首东 李连申 《火力与指挥控制》 CSCD 北大核心 2006年第12期105-107,111,共4页
C4ISR系统在现代战争中的重要作用使得其评价问题得到了前所未有的重视。结合C4ISR系统的实战情况,通过对影响其作战效能不确定因素的分析和处理,运用AHP-Fuzzy分析法,建立了C4ISR系统作战效能的综合量化评估模型,讨论了联合作战中C4IS... C4ISR系统在现代战争中的重要作用使得其评价问题得到了前所未有的重视。结合C4ISR系统的实战情况,通过对影响其作战效能不确定因素的分析和处理,运用AHP-Fuzzy分析法,建立了C4ISR系统作战效能的综合量化评估模型,讨论了联合作战中C4ISR系统的定量评估方法。最后通过算例,证明了此方法的有效性和可行性,为C4ISR系统的效能评估提供了一种有效的方法和途径。 展开更多
关键词 c^4ISR AHP—fuzzy评判 作战效能
在线阅读 下载PDF
一种改进的 Fuzzy c-means 聚类算法 被引量:4
12
作者 胡钟山 丁震 +2 位作者 杨静宇 唐振民 邬永革 《南京理工大学学报》 EI CAS CSCD 1997年第4期337-340,共4页
该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且... 该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且MFCM较FCM有较低的时间复杂性,讨论了MFCM与FCM空间复杂性的关系。最后数值实验证实了结论。 展开更多
关键词 模糊聚类 模式识别 聚类分析 MFcM
在线阅读 下载PDF
Fuzzy C-Means算法中隶属度信息在特征空间的分布特性分析及改进方法 被引量:2
13
作者 胡世英 周源华 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1999年第1期67-72,共6页
首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明... 首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明这两种方法均起到了较好的效果. 展开更多
关键词 fuzzy 隶属度 选择注意性参数 置信度 FcM算法
在线阅读 下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:2
14
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 c-均值聚类 鹈鹕优化算法 点云简化 信息熵
在线阅读 下载PDF
Canny算子+模糊C聚类融合的红外热成像机场道面积水识别方法
15
作者 蔡靖 王锴 +1 位作者 李岳 戴轩 《科学技术与工程》 北大核心 2024年第28期12382-12390,共9页
为解决基于积水可见光图片处理时,受光照变化影响大、夜晚及恶劣天气下难以成像,或成像图像质量低到无法识别的问题。提出一种利用红外热成像+图像处理技术进行积水区域识别的方法,利用红外成像技术拍摄道面积水图像克服了传统拍照方式... 为解决基于积水可见光图片处理时,受光照变化影响大、夜晚及恶劣天气下难以成像,或成像图像质量低到无法识别的问题。提出一种利用红外热成像+图像处理技术进行积水区域识别的方法,利用红外成像技术拍摄道面积水图像克服了传统拍照方式受光照条件限制的缺陷,进一步针对红外成像积水边界边缘模糊、边缘温度分布无明显规律的特征,提出基于Canny算子和模糊C均值聚类的红外图像积水边缘检测融合算法,并利用该算法对实拍积水红外图像进行处理分析,结果表明:该算法对模糊边界有良好的提取效果,图像分割结果与人工标注的实际面积误差在7%以内,且利用像素点的比值能够快速、准确地获取积水面积,为湿滑跑道道面状况评估提供量化支撑,为飞机在湿滑道面上的安全运行提供有效技术支撑。 展开更多
关键词 积水 红外热成像 边缘检测 模糊c均值聚类
在线阅读 下载PDF
Selection of the best initial orbital elements of satellite based on fuzzy integration evaluation method 被引量:3
16
作者 Yang Yong'an Zhang Hongwei +1 位作者 Feng Zuren Luo Yongjin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期566-570,共5页
The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center w... The fuzzy integration evaluation method (FIEM) is studied in order to select the best orbital elements from the multi-group initial orbits determined by a satellite TT&C (Tracking, Telemetry and Control) center with all kinds of data sources. By employing FIEM together with the experience of TT&C experts, the index system to evaluate the selection of the best initial orbits is established after the data sources and orbit determination theories are studied. Besides, the concrete steps in employing the method are presented. Moreover, by taking the objects to be evaluated as evaluation experts, the problem of how to generate evaluation matrices is solved. Through practical application, the method to select the best initial orbital elements has been proved to be flexible and effective The originality of the method is to find a new evaluation criterion (comparing the actually tracked orbits) replacing the traditional one (comparing the nominal orbits) for selecting the best orbital elements. 展开更多
关键词 system engineering fuzzy integration evaluation method SATELLITE initial orbit TT&c system.
在线阅读 下载PDF
基于FCM及快速迭代收缩阈值算法的平面ECT图像重建
17
作者 张立峰 唐志浩 《计量学报》 CSCD 北大核心 2024年第6期899-906,共8页
为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离... 为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离散小波基(DWT)对灰度值进行稀疏表示,并建立L1正则化模型,采用FISTA进行求解,以实现图像重建;最后将FCM处理后的电容值分别用于Landweber算法、Tikhonov算法进行重建对比。仿真与实验结果表明,该算法重建图像的平均相对误差约为0.0527,平均相关系数约为0.9422,均优于其它算法,且重建图像伪影较少,更接近真实情况;因此,所提算法具有更好的重建效果。。 展开更多
关键词 电容层析成像 平面阵列电容 图像重建 模糊c均值聚类 快速迭代收缩阈值算法 缺陷检测
在线阅读 下载PDF
基于改进FCM的冲压件缺陷图像分割算法
18
作者 张玉杰 高晗 《计算机工程》 CAS CSCD 北大核心 2024年第10期342-351,共10页
在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对... 在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对上述问题,提出一种改进的FCM算法。采用内核诱导距离中的简单两项代替传统的欧氏距离,将原有的空间像素映射到高维特征空间,提高线性可分概率和计算速度;利用图像像素之间的空间相关性,通过引入改进的马尔可夫随机场对FCM目标函数进行修正,提高算法的抗噪能力以及分割精度;采用秃鹰搜索(BES)算法确定FCM的初始聚类中心,提高算法的收敛速度,同时避免算法陷入局部极值的情况。为验证改进FCM算法的性能,选取划分熵、划分系数、Xie_Beni系数以及迭代次数作为评价指标,并与近年来先进的图像分割算法进行对比。实验结果表明,改进FCM算法具有更好的抗噪能力,能得到更好的缺陷分割效果,对工业生产中的冲压件缺陷检测有一定的应用价值。 展开更多
关键词 模糊c均值聚类 工业应用 冲压件缺陷 内核诱导距离 马尔可夫随机场 秃鹰搜索算法
在线阅读 下载PDF
Sorting radar signal from symmetry clustering perspective 被引量:13
19
作者 Mohaned Giess Shokrallah Ahmed Bin Tang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期690-696,共7页
The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with i... The main function of electronic support measure system is to detect threating signals in order to take countermeasures against them. To accomplish this objective, a process of associating each interleaved pulse with its emitter must be done. This process is termed sorting or de-interleaving. A novel point symmetry based radar sorting (PSBRS) algorithm is addressed. In order to deal with all kinds of radar signals, the symmetry measure distance is used to cluster pulses instead of the conventional Euclidean distance. The reference points of the symmetrical clusters are initialized by the alternative fuzzy c-means (AFCM) algorithm to ameliorate the effects of noise and the false sorting. Besides, the density filtering (DF) algorithm is proposed to discard the noise pulses or clutter. The performance of the algorithm is evaluated under the effects of noise and missing pulses. It has been observed that the PSBRS algorithm can cope with a large number of noise pulses and it is completely independent of missing pulses. Finally, PSBRS is compared with some benchmark algorithms, and the simulation results reveal the feasibility and efficiency of the algorithm. 展开更多
关键词 sorting radar pulse SYMMETRY alternative fuzzy c-means noise missing pulse
在线阅读 下载PDF
优化模糊C均值聚类的台区用户用电特征分析方法 被引量:6
20
作者 雷光远 张涛 +2 位作者 唐永聪 梁特 舒可心 《电力系统及其自动化学报》 CSCD 北大核心 2024年第1期99-105,共7页
精准的用户特性分析方法是配电网模型计算与电力服务制定的重要基础之一,为克服现有配电台区多样性用户划分的数量选择与特征选择难题,提出一种优化模糊C-均值聚类的用户用电特征分析方法。利用优化的模糊C-均值算法实现聚类分析,通过... 精准的用户特性分析方法是配电网模型计算与电力服务制定的重要基础之一,为克服现有配电台区多样性用户划分的数量选择与特征选择难题,提出一种优化模糊C-均值聚类的用户用电特征分析方法。利用优化的模糊C-均值算法实现聚类分析,通过聚类中心建立特征模型,从而获知多样化场景下配电台区用户特性。在聚类过程中,通过蜜獾算法优化选取模糊C-均值聚类初值,来应对易局部最优的难题,找到目标函数最小的结果;利用指标自适应极小值的原则选取最佳聚类数,使聚类中心代表性更强。通过天津地区的典型案例获取用户用电特征,实现聚类目标函数与结果综合性评价指标最优的目的。 展开更多
关键词 聚类分析 模糊c均值 蜜獾优化 用电特征
在线阅读 下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部