期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
FBFN-based adaptive repetitive control of nonlinearly parameterized systems
1
作者 Wenli Sun Hong Cai Fu Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期1003-1010,共8页
An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes... An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method. 展开更多
关键词 adaptive control nonlinear parameterization repetitive control fuzzy basis function network (fbfn permanentmagnet linear synchronous motor (PMLSM)
在线阅读 下载PDF
核反应堆冷却剂系统故障诊断动态模糊径向基神经网络模型
2
作者 朱佳浩 戴滔 +1 位作者 隋阳 李枭瀚 《科学技术与工程》 北大核心 2025年第11期4567-4573,共7页
针对传统的故障诊断方法难以在不确定环境下准确诊断核电厂核反应堆冷却剂系统(reactor coolant system, RCS)故障这一问题,按照以下路线建立了一种核电厂RCS故障诊断动态模糊径向基神经网络(dynamic fuzzy radial basis function neura... 针对传统的故障诊断方法难以在不确定环境下准确诊断核电厂核反应堆冷却剂系统(reactor coolant system, RCS)故障这一问题,按照以下路线建立了一种核电厂RCS故障诊断动态模糊径向基神经网络(dynamic fuzzy radial basis function neural network, DFRBFNN)模型。首先,根据RCS的故障类型和样本数据,确定DFRBFNN模型的初始结构;然后,应用径向基神经网络方法,构建了RCS故障诊断DFRBFNN初始模型,应用随机初始化方法,对DFRBFNN初始模型的去模糊层到输出层的连接权重进行初始化处理;最后,应用误差下降率法,修正DFRBFNN初始模型的结构和参数,构建了RCS故障诊断DFRBFNN模型。应用所建立的模型对冷却剂丧失、失流和蒸汽发生器管道破裂事故进行诊断,并与传统的故障诊断模型进行对比,验证了本文所建立模型的有效性。研究表明,所构建的核电厂RCS故障诊断DFRBFNN模型能够在不确定环境下准确地诊断RCS的故障。 展开更多
关键词 核电厂 核反应堆冷却剂系统 故障诊断 动态模糊径向基神经网络模型
在线阅读 下载PDF
Neural network modeling and control of proton exchange membrane fuel cell 被引量:1
3
作者 陈跃华 曹广益 朱新坚 《Journal of Central South University of Technology》 EI 2007年第1期84-87,共4页
A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trai... A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trained by the input-output data of impedance. A fuzzy neural network controller was designed to control the impedance response. The RBF neural network model was used to test the fuzzy neural network controller. The results show that the RBF model output can imitate actual output well, the maximal error is not beyond 20 m-, the training time is about 1 s by using 20 neurons, and the mean squared errors is 141.9 m-2. The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is about 3 min. 展开更多
关键词 proton exchange membrane fuel cell radial basis function neural network fuzzy neural network
在线阅读 下载PDF
基于微形变分析的电容式MEMS加速度计温漂误差精密估计方法
4
作者 齐兵 程建华 +1 位作者 赵砚驰 汪籽粒 《系统工程与电子技术》 EI CSCD 北大核心 2024年第7期2437-2445,共9页
针对传统的电容式微机电系统(micro-electro-mechanical system,MEMS)加速度计(capacitive MEMS accelerometers,CMA)温漂误差(temperature drift error,TDE)补偿方法存在非精准溯源TDE致使TDE估计精度低、反复尝试估计模型构型导致构... 针对传统的电容式微机电系统(micro-electro-mechanical system,MEMS)加速度计(capacitive MEMS accelerometers,CMA)温漂误差(temperature drift error,TDE)补偿方法存在非精准溯源TDE致使TDE估计精度低、反复尝试估计模型构型导致构建过程复杂繁琐的问题,提出基于微形变分析的CMA TDE精密补偿方法。首先,通过微形变分析内部结构精准溯源TDE,基于径向基函数神经网络(radial basis function neural network,RBFNN)构建改进型TDE精密估计模型;其次,基于专家经验和模糊理论提出Expert-Fuzzy辅助决策下TDE估计模型辨识方法,为改进模型提供有效的构型指导;然后,设计升温试验测试CMA,构建传统模型和改进模型并通过对比其输出偏置稳定性评估TDE估计性能。实验结果表明,改进模型构建过程大大简化,补偿后CMA偏置稳定性提升约35%。本方法能够更加精准地估计TDE,有效解耦硅基材料的温度依赖性并提升CMA的环境适应性。 展开更多
关键词 微机电系统 温漂误差估计 微形变分析 Expert-fuzzy辅助决策 径向基函数神经网络
在线阅读 下载PDF
基于模糊RBF神经网络PID的AUV姿态控制研究 被引量:2
5
作者 牛亮 党晓圆 +1 位作者 冯元 崔卫星 《传感器与微系统》 CSCD 北大核心 2024年第10期11-14,共4页
针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水... 针对自主水下航行器(AUV)高精度、强鲁棒性的运动姿态控制需求,提出了一种径向基函数(RBF)神经网络结合模糊PID控制的水下机器人运动控制器;采用RBF神经网络对模糊PID控制器参数进行优化,有效解决了模糊PID控制过度依赖经验,难以应对水下复杂工况的问题。仿真结果表明:模糊RBF神经网络PID控制器在AUV姿态调节中表现出较传统模糊PID控制器更好的响应速度和抗干扰能力,有效改善了AUV姿态控制性能;经实际应用验证,控制器在复杂工况下可以快速收敛至期望姿态并维持稳定。 展开更多
关键词 自主水下航行器 运动控制 径向基函数神经网络 模糊PID 运动控制器
在线阅读 下载PDF
基于平滑因子引入和神经网络优化的锂电池SOC估计方法
6
作者 付炳喆 李沂洹 +1 位作者 王玮 李慷 《电源技术》 CAS 北大核心 2024年第1期143-149,共7页
为提高锂电池荷电状态(SOC)的估计精度,提出了一种基于平滑因子引入和神经网络优化的锂电池SOC估计方法。将黄金分割优选法和模糊C均值聚类算法应用于RBF神经网络,分别用来确定最佳隐含层神经元个数和径向基中心;采用遗传算法对高斯核... 为提高锂电池荷电状态(SOC)的估计精度,提出了一种基于平滑因子引入和神经网络优化的锂电池SOC估计方法。将黄金分割优选法和模糊C均值聚类算法应用于RBF神经网络,分别用来确定最佳隐含层神经元个数和径向基中心;采用遗传算法对高斯核函数宽度及连接权值进行优化,解决了RBF神经网络结构和初始参数难以确定的问题。将滑动时间窗口内的放电容量作为平滑因子引入神经网络模型,增强了RBF网络对锂离子电池非线性特性拟合的能力。基于实验获得的锂离子电池在联邦城市行车计划(FUDS)工况下的数据,对所提出的方法进行仿真和验证,结果表明,所提方法显著提升了锂电池SOC的估计精度。 展开更多
关键词 电池荷电状态 径向基神经网络 遗传算法 模糊C均值聚类 黄金分割优选法
在线阅读 下载PDF
基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型 被引量:99
7
作者 叶林 陈政 +1 位作者 赵永宁 朱倩雯 《电力系统自动化》 EI CSCD 北大核心 2015年第16期16-22,共7页
针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最... 针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最小的历史日作为相似日,把与光伏发电功率相关性大的太阳辐射强度和温度作为模型输入变量,提出K均值聚类和遗传算法的参数优化方法,建立基于GA—模糊RBF神经网络的最终预测模型。在光伏功率预测的基础上,提出一种平滑控制策略,对光伏并网功率进行有效调节,从而达到平滑光伏功率波动的目的。实例证明,所述预测模型具有较高精度,并验证了平滑功率波动控制策略的有效性。 展开更多
关键词 功率预测 遗传算法 模糊径向基神经网络 平滑功率波动
在线阅读 下载PDF
基于混合算法的短期负荷预测模糊建模(英文) 被引量:6
8
作者 叶彬 朱承治 +1 位作者 郭创新 曹一家 《电力系统自动化》 EI CSCD 北大核心 2006年第2期32-40,95,共10页
结合最小二乘(LS)辨识以及一种基于进化规划(EP)和粒子群优化(PSO)的混合进化算法EPPSO, 针对对温度比较敏感的夏季负荷,提出一种3阶段短期负荷预测(STLF)算法。在第1阶段,应用LS设计模糊基函数网络(FBFN)完成STLF模糊空间划分;第2阶段... 结合最小二乘(LS)辨识以及一种基于进化规划(EP)和粒子群优化(PSO)的混合进化算法EPPSO, 针对对温度比较敏感的夏季负荷,提出一种3阶段短期负荷预测(STLF)算法。在第1阶段,应用LS设计模糊基函数网络(FBFN)完成STLF模糊空间划分;第2阶段,首先拓展FBFN成一阶Sugeno模糊模型,然后应用EPPSO调节其前件参数同时训练后件参数,最后将前述模型用于STLF得出的预测误差看做一个新的时间序列,并仅用气象因素对其进行辨识,可以用回归模型表示该辨识模型,进而应用LS进行辨识。文中提出的STLF模糊建模策略主要贡献于受气象因素影响较大的夏季负荷。仿真部分对浙江省电力公司的实际负荷进行了预测,与其他方法的比较结果证明该方法具有良好的预测性能。 展开更多
关键词 模糊基函数网络 短期负荷预测 进化模糊系统
在线阅读 下载PDF
基于径向基函数神经网络的电网模糊元胞故障诊断 被引量:54
9
作者 熊国江 石东源 +1 位作者 朱林 陈祥文 《电力系统自动化》 EI CSCD 北大核心 2014年第5期59-65,共7页
提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路... 提出了基于径向基函数神经网络的电网模糊元胞故障诊断方法,旨在有效解决神经网络应用于电网故障诊断所面临的适应网络拓扑结构变化的可移植性问题。该方法以单个线路、母线和变压器为元胞对象,以保护各元胞的所有关联保护和对应的断路器为输入,建立了元胞通用神经网络诊断模型,并给出了故障诊断时模型的自动生成方法。此外,考虑到电网故障信息存在不完备性和不确定性,本文采用模糊矢状图来描述电网元件、保护和断路器之间的逻辑推理关系,并提取出蕴含不确定性的模糊推理规则,用于训练元胞通用神经网络。算例仿真结果表明,该方法简单、有效,能处理各种复杂故障情况,且能有效适应网络拓扑结构的变化,具有良好的容错性和可移植性。 展开更多
关键词 电力系统 元胞故障诊断 径向基函数神经网络 模糊矢状图 可移植性
在线阅读 下载PDF
基于径向基函数神经网络和模糊积分融合的电网分区故障诊断 被引量:53
10
作者 石东源 熊国江 +1 位作者 陈金富 李银红 《中国电机工程学报》 EI CSCD 北大核心 2014年第4期562-569,共8页
为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的... 为有效解决分区故障诊断关于互连区域间联络线的诊断问题,提出了基于径向基函数神经网络和模糊积分融合的大电网故障诊断方法。该方法通过网络重叠分区将大电网划分为若干区域,故障发生后根据警报信息选择性触发警报信息所在区域对应的区域径向基函数神经网络诊断模块,然后利用模糊积分关联融合相连区域关于联络线的诊断输出,实现对联络线的故障诊断。该方法不仅可以诊断各区域内部发生的故障,而且能够有效地诊断区域间联络线发生的故障。算例仿真结果表明:该方法简单、有效,能弥补现有电网分区故障诊断方法在联络线故障诊断方面存在的不足,且能够处理各种复杂故障情况,具有良好的故障容错能力。 展开更多
关键词 大电网 电网分区 故障诊断 径向基函数神经网络 模糊积分
在线阅读 下载PDF
基于模糊神经网络的方剂功效约简算法 被引量:7
11
作者 乔少杰 唐常杰 +4 位作者 韩楠 彭京 李川 邱江涛 蒋永光 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2008年第2期107-111,共5页
为了解决中药方剂的功效约简问题,将模糊神经元和径向基函数引入神经网络,提出了基于模糊神经网络的方剂功效约简算法PERA(Prescription Effect Reduction Algorithm),设计了方剂功效约简模糊神经网络EFNN(Effect Fuzzy Neural Network... 为了解决中药方剂的功效约简问题,将模糊神经元和径向基函数引入神经网络,提出了基于模糊神经网络的方剂功效约简算法PERA(Prescription Effect Reduction Algorithm),设计了方剂功效约简模糊神经网络EFNN(Effect Fuzzy Neural Network)。通过大量实验表明,与传统的基于神经网络和粗糙集的属性约简算法相比,PERA算法功效约简的准确率较高,一般在90%以上,功效约简的完整率优势明显,平均高出约40%,系统运行时间明显小于传统神经网络。 展开更多
关键词 功效约简 模糊神经元 径向基函数 模糊神经网络
在线阅读 下载PDF
基于数据挖掘的电力负荷脏数据动态智能清洗 被引量:37
12
作者 张晓星 程其云 +1 位作者 周湶 孙才新 《电力系统自动化》 EI CSCD 北大核心 2005年第8期60-64,共5页
来源于SCADA系统的负荷历史数据由于各种原因含有一定的脏数据,在进行高精度的电 力负荷预测或系统分析前必须仔细而合理地对历史数据进行清洗。文中基于数据挖掘理论提出一 种动态的智能清洗模型,先根据模糊软聚类思想对Kohonen神经网... 来源于SCADA系统的负荷历史数据由于各种原因含有一定的脏数据,在进行高精度的电 力负荷预测或系统分析前必须仔细而合理地对历史数据进行清洗。文中基于数据挖掘理论提出一 种动态的智能清洗模型,先根据模糊软聚类思想对Kohonen神经网络进行了改进,改进后的 Kohonen神经网络能实现模糊软聚类的并行计算,提出的动态算法能根据样本集的更新而自动确 定新的聚类中心(即特征曲线),最后与径向基函数(RBF)网络一起构成脏数据的智能清洗模型。 模型的快速性和动态性特点使其宜于进行负荷数据的实时处理,对重庆江北负荷数据的实例分析 说明了该模型的高效性。 展开更多
关键词 数据挖掘 模糊软聚类 神经网络 动态清洗 脏数据
在线阅读 下载PDF
基于径向基函数神经网络和模糊控制系统的电网故障诊断新方法 被引量:41
13
作者 毕天姝 倪以信 +1 位作者 吴复立 杨奇逊 《中国电机工程学报》 EI CSCD 北大核心 2005年第14期12-18,共7页
该文针对RBF神经网络的知识存储和诊断过程是一个黑箱,对运行人员不透明,且当电网拓扑结构发生变化或扩展时,神经网络只能重新训练等问题,推导并建立了RBF神经网络和模糊控制系统之间的等值关系,使得蕴含在RBF神经网络权重中的知识转变... 该文针对RBF神经网络的知识存储和诊断过程是一个黑箱,对运行人员不透明,且当电网拓扑结构发生变化或扩展时,神经网络只能重新训练等问题,推导并建立了RBF神经网络和模糊控制系统之间的等值关系,使得蕴含在RBF神经网络权重中的知识转变为等值模糊控制系统中用语言表述的规则。在此基础上,针对电网结构发生变化或扩展情况,提出了RBF神经网络的局部重新训练新算法。提出的基于RBF神经网络和等值模糊控制系统的故障诊断方法在IEEE118母线系统中进行了仿真试验,结果表明:基于RBF网络与等值模糊系统的故障诊断方法诊断知识易于理解,诊断过程透明,并能适应电网拓扑结构发生变化或扩展的情况,效果理想。 展开更多
关键词 电力系统 故障诊断 径向基函数神经网络 模糊控制系统 重新训练算法
在线阅读 下载PDF
一种新的天然气管网负荷预测方法 被引量:10
14
作者 杨昭 苗志彬 刘燕 《天然气工业》 EI CAS CSCD 北大核心 2003年第4期93-96,共4页
针对天然气管网负荷变化的特点 ,提出了用模糊逻辑和RBF神经网络模型 (FL RBFNNM)来预测天然气管网的负荷。即首先利用模糊逻辑系统预测出负荷误差及误差变化率 ,从而实现了天然气负荷的在线修正 ;再利用改进的RBF神经网络进行天然气管... 针对天然气管网负荷变化的特点 ,提出了用模糊逻辑和RBF神经网络模型 (FL RBFNNM)来预测天然气管网的负荷。即首先利用模糊逻辑系统预测出负荷误差及误差变化率 ,从而实现了天然气负荷的在线修正 ;再利用改进的RBF神经网络进行天然气管网负荷的预测。在数据的处理上 ,应用了数据分类处理以及“近大远小”原则 ,并且在RBF网络模型中采用了最新邻聚类算法 ,实现了网络结构和参数的双重调节 ,大大提高了训练的速度和预测的精度。最后将此模型应用于实际中 ,并和单纯的RBF神经网络模型进行了比较 ,结果证明该模型可以快速准确预测出天然气管网的负荷值。 展开更多
关键词 天然气管网 负荷 预测方法 神经网络 数据处理
在线阅读 下载PDF
模糊RBF神经网络在专家系统知识库建立中的应用 被引量:14
15
作者 王雅娣 曹长修 +1 位作者 任江洪 叶仲泉 《计算机工程》 CAS CSCD 北大核心 2005年第3期175-177,共3页
提出了一种基于模糊RBF神经网络建立故障诊断专家系统知识库的新方法,采用5层神经网络,先对输入量进行模糊化处理,然后对RBF神经网络进行学习,最后进行反模糊化处理。该模型非常适合复杂的异常炉况系统在线故障诊断。
关键词 模糊RBF神经网络 知识库 模糊化 专家系统 在线故障诊断 异常 输入量 处理 新方法 复杂
在线阅读 下载PDF
基于模糊径向基函数神经网络的PID算法球磨机控制系统研究 被引量:20
16
作者 程启明 程尹曼 +1 位作者 郑勇 汪明媚 《中国电机工程学报》 EI CSCD 北大核心 2009年第35期22-28,共7页
针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采... 针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采用混合优化算法,即首先采用混沌粒子群优化(particle swarm optimization,PSO)算法进行离线粗调,再采用BP算法进行在线细调,从而快速全局收敛得到最佳的PID控制参数。Matlab仿真结果表明,该控制系统有效地解决了球磨机这种复杂对象的控制问题,该系统控制参数的优化算法收敛快、不易陷入局部极小点,系统控制跟踪快、超调小、解耦好、鲁棒性和适应性强,控制品质优于传统PID解耦控制方法。 展开更多
关键词 球磨机 模糊径向基函数神经网络 混合优化算法 早熟判据 PID控制
在线阅读 下载PDF
模糊小波基神经网络的机器人轨迹跟踪控制 被引量:22
17
作者 孙炜 王耀南 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第1期49-53,共5页
提出一种模糊神经网络控制器并用于机器人轨迹跟踪控制 .这种模糊神经网络利用了小波基函数作为隶属函数 ,可在线根据误差调整隶属函数的形状 ,使模糊神经网络具有更强的学习和适应能力 .仿真与实验结果表明这种网络能很好的用于机器人... 提出一种模糊神经网络控制器并用于机器人轨迹跟踪控制 .这种模糊神经网络利用了小波基函数作为隶属函数 ,可在线根据误差调整隶属函数的形状 ,使模糊神经网络具有更强的学习和适应能力 .仿真与实验结果表明这种网络能很好的用于机器人的轨迹跟踪控制 ,具有很好的性能 . 展开更多
关键词 机器人 轨迹跟踪控制 模糊神经网络 小波基函数 动态控制 机械手 仿真
在线阅读 下载PDF
基于Zernike矩特征的FCM-RBF神经网络图像分类器 被引量:8
18
作者 倪鹏 黄蔚 +1 位作者 吕巍 姚禹 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第6期1284-1288,共5页
针对交通监控图像识别精度较差的问题,设计一种基于径向基(radial-basis)函数神经网络的图像分类器.该分类器利用Zernike矩噪声敏感度较小、形状特征稳定性好的特点,构建四阶矩的特征向量,用于特征提取;利用自适应模糊聚类方法,解决径... 针对交通监控图像识别精度较差的问题,设计一种基于径向基(radial-basis)函数神经网络的图像分类器.该分类器利用Zernike矩噪声敏感度较小、形状特征稳定性好的特点,构建四阶矩的特征向量,用于特征提取;利用自适应模糊聚类方法,解决径向基函数神经网络隐层节点数不确定的问题.仿真分析表明,该分类器与基于改进的快速模糊C均值聚类算法的Back Propagation网络分类器和径向基函数神经网络分类器相比具有更高的识别率,与改进的粒子群优化模糊C均值聚类算法的径向基函数神经网络分类器相比具有相近的识别率,但其计算复杂度较低.仿真实验结果表明,该方法具有较好的分类能力及较高的计算效率. 展开更多
关键词 ZERNIKE 模糊 C 均值 径向基神经网络 图像分类器
在线阅读 下载PDF
中央制冷空调冷冻水系统模糊RBF控制研究 被引量:14
19
作者 孙丽萍 李元 +1 位作者 张冬妍 刘亚秋 《电机与控制学报》 EI CSCD 北大核心 2017年第5期110-116,共7页
针对中央空调冷冻水系统回水温度快速准确调节问题,提出基于模糊径向基函数(radial basis function,RBF)网络的变流量回水温度智能控制方法。首先,对冷冻水系统旁通阀门的水量开度、泵组转速等输入量,按照模糊控制理论,进行模糊化与反... 针对中央空调冷冻水系统回水温度快速准确调节问题,提出基于模糊径向基函数(radial basis function,RBF)网络的变流量回水温度智能控制方法。首先,对冷冻水系统旁通阀门的水量开度、泵组转速等输入量,按照模糊控制理论,进行模糊化与反模糊化处理,获得归一化的输入信息向量;然后,利用能够全局寻优的RBF网络进行温度预测,不断迭代预测产生理想的预测温度;最后,当期望温度与预测迭代的温度残差小于门限值时,停止迭代,输出并记录温度,完成冷冻水系统的非线性温度控制。仿真实验表明,相比于传统反向神经(back propagation,BP)网络控制,RBF控制方法迭代次数更少且精度更高,能够提高系统的整体性能。 展开更多
关键词 中央空调 冷冻水系统 径向基函数 模糊控制 反向传播神经网络
在线阅读 下载PDF
基于SFAM神经网络集成的土地评价 被引量:15
20
作者 薛月菊 胡月明 +1 位作者 杨敬锋 陈强 《农业工程学报》 EI CAS CSCD 北大核心 2008年第3期184-188,共5页
SFAM(Simplified Fuzzy ARTMAP,简化的模糊ARTMAP)神经网络具有自组织反馈、增量式学习和高度复杂映射等特点,是一种较BP神经网络和RBF神经网络等前馈神经网络更优秀的自组织神经网络。为克服SFAM神经网络受输入样本顺序的影响,提高土... SFAM(Simplified Fuzzy ARTMAP,简化的模糊ARTMAP)神经网络具有自组织反馈、增量式学习和高度复杂映射等特点,是一种较BP神经网络和RBF神经网络等前馈神经网络更优秀的自组织神经网络。为克服SFAM神经网络受输入样本顺序的影响,提高土地评价的精度,提出利用SFAM神经网络集成进行土地评价的方法。并用SFAM神经网络、SFAM神经网络集成、BP神经网络、BP神经网络集成、RBF神经网络和RBF神经网络集成等方法对广东省中山市的土地进行了评价,对评价结果进行了分析和比较,结果表明SFAM神经网络具有比BP神经网络和RBF神经网络更优越的评价性能;对于这三种不同的神经网络,神经网络集成的土壤评价精度分别高于单个神经网络的精度。 展开更多
关键词 土地评价 神经网络集成 SFAM神经网络 BP神经网络 RBF神经网络
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部