An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes...An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.展开更多
A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trai...A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trained by the input-output data of impedance. A fuzzy neural network controller was designed to control the impedance response. The RBF neural network model was used to test the fuzzy neural network controller. The results show that the RBF model output can imitate actual output well, the maximal error is not beyond 20 m-, the training time is about 1 s by using 20 neurons, and the mean squared errors is 141.9 m-2. The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is about 3 min.展开更多
基金supported by the National Natural Science Foundation of China (61203041)the Chinese National Post-doctor Science Foundation (2011M500217)
文摘An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.
基金Project(2003AA517020) supported by the National High Technology Research and Development Program of China
文摘A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trained by the input-output data of impedance. A fuzzy neural network controller was designed to control the impedance response. The RBF neural network model was used to test the fuzzy neural network controller. The results show that the RBF model output can imitate actual output well, the maximal error is not beyond 20 m-, the training time is about 1 s by using 20 neurons, and the mean squared errors is 141.9 m-2. The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is about 3 min.