期刊文献+
共找到932篇文章
< 1 2 47 >
每页显示 20 50 100
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
1
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy c-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
2
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
在线阅读 下载PDF
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
3
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy c-mean similarity measure distance measure interconnected system clustering
在线阅读 下载PDF
The Fuzzy Cluster Analysis in Identification of Key Temperatures in Machine Tool
4
作者 ZHAO Da-quan 1, ZHENG Li 1, XIANG Wei-hong 1, LI Kang 1, LIU Da-cheng 1, ZHANG Bo-peng 2 (1. Department of Industrial Engineering, Tsinghua University, 2. Department of Precision Instruments and Mechanology, Tsinghua University, B eijing 100084, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期88-89,共2页
The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was need... The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was needed. The relationship can be deduced by virtual of FEM (Finite Element Method ), ANN (Artificial Neural Network) or MRA (Multiple Regression Analysis). MR A is on the basis of a total understanding of the temperature distribution of th e machine tool. Although the more the temperatures measured are, the more accura te the MRA is, too more temperatures will hinder the analysis calculation. So it is necessary to identify the key temperatures of the machine tool. The selectio n of key temperatures decides the efficiency and precision of MRA. Because of th e complexities and multi-input and multi-output structure of the relationships , the exact quantitative portions as well as the unclear portions must be taken into consideration together to improve the identification of key temperatures. I n this paper, a fuzzy cluster analysis was used to select the key temperatures. The substance of identifying the key temperatures is to group all temperatures b y their relativity, and then to select a temperature from each group as the repr esentation. A fuzzy cluster analysis can uncover the relationships between t he thermal field and deformations more truly and thoroughly. A fuzzy cluster ana lysis is the cluster analysis based on fuzzy sets. Given U={u i|i=0,...,N}, in which u i is the temperature measured, a fuzzy matrix R can be obta ined. The transfer close package t(R) can be deduced from R. A fuzzy clu ster of U then conducts on the basis of t(R). Based on the fuzzy cluster analysis discussed above, this paper identified the k ey temperatures of a horizontal machining center. The number of the temperatures measured was reduced to 4 from 32, and then the multiple regression relationshi p models between the 4 temperatures and the thermal deformations of the spindle were drawn. The remnant errors between the regression models and measured deform ations reached a satisfying low level. At the same time, the decreasing of tempe rature variable number improved the efficiency of measure and analysis greatly. 展开更多
关键词 The fuzzy cluster analysis in Identification of Key Temperatures in Machine Tool
在线阅读 下载PDF
一种改进的 Fuzzy c-means 聚类算法 被引量:4
5
作者 胡钟山 丁震 +2 位作者 杨静宇 唐振民 邬永革 《南京理工大学学报》 EI CAS CSCD 1997年第4期337-340,共4页
该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且... 该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且MFCM较FCM有较低的时间复杂性,讨论了MFCM与FCM空间复杂性的关系。最后数值实验证实了结论。 展开更多
关键词 模糊聚类 模式识别 聚类分析 MFCM
在线阅读 下载PDF
一种新的基于Fuzzy c-means的高效自适应截集算法
6
作者 高晶 常亮 吴铁峰 《现代电子技术》 2006年第14期100-101,104,共3页
提出了一种新的模糊聚类方法-自适应截集算法。该方法克服了聚类数目c要求预先确定、局部最优、分类不确定等弱点,对算法结构加以改进,增加聚类有效性问题的分析,在聚类过程中可动态调整聚类数目。针对时间消耗问题,利用模糊截集提高分... 提出了一种新的模糊聚类方法-自适应截集算法。该方法克服了聚类数目c要求预先确定、局部最优、分类不确定等弱点,对算法结构加以改进,增加聚类有效性问题的分析,在聚类过程中可动态调整聚类数目。针对时间消耗问题,利用模糊截集提高分类识别的速度。经实验表明,本算法可以提高聚类算法的可靠程度和分类识别的正确性。 展开更多
关键词 模糊聚类 聚类数 自适应截集算法 聚类分析
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
7
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
8
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
Insulation Diagnosis of Service Aged XLPE Power Cables Using Statistical Analysis and Fuzzy Inference 被引量:1
9
作者 LIU Fei JIANG Pingkai +2 位作者 LEI Qingquan ZHANG Li SU Wenqun 《高电压技术》 EI CAS CSCD 北大核心 2013年第8期1932-1940,共9页
Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging st... Cables that have been in service for over 20 years in Shanghai, a city with abundant surface water, failed more frequently and induced different cable accidents. This necessitates researches on the insulation aging state of cables working in special circumstances. We performed multi-parameter tests with samples from about 300 cable lines in Shanghai. The tests included water tree investigation, tensile test, dielectric spectroscopy test, thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and electrical aging test. Then, we carried out regression analysis between every two test parameters. Moreover, through two-sample t-Test and analysis of va- riance (ANOVA) of each test parameter, we analyzed the influences of cable-laying method and sampling section on the degradation of cable insulation respectively. Furthermore, the test parameters which have strong correlation in the regression analysis or significant differ- ences in the t-Test or ANOVA analysis were determined to be the ones identifying the XLPE cable insulation aging state. The thresholds for distinguishing insulation aging states had been also obtained with the aid of statistical analysis and fuzzy clustering. Based on the fuzzy in- ference, we established a cable insulation aging diagnosis model using the intensity transfer method. The results of regression analysis indicate that the degradation of cable insulation accelerates as the degree of in-service aging increases. This validates the rule that the in- crease of microscopic imperfections in solid material enhances the dielectric breakdown strength. The results of the two-sample t-Test and the ANOVA indicate that the direct-buried cables are more sensitive to insulation degradation than duct cables. This confirms that the tensile strength and breakdown strength are reliable functional parameters in cable insulation evaluations. A case study further indicates that the proposed diagnosis model based on the fuzzy inference can reflect the comprehensive aging state of cable insulation well, and that the cable service time has no correlation with the insulation aging state. 展开更多
关键词 交联聚乙烯绝缘电力电缆 模糊推理 统计分析 诊断服务 傅立叶变换红外光谱 电缆绝缘层 老化状态 电击穿强度
在线阅读 下载PDF
New judging model of fuzzy cluster optimal dividing based on rough sets theory
10
作者 Wang Yun Liu Qinghong +1 位作者 Mu Yong Shi Kaiquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期392-397,共6页
To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totali... To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model. 展开更多
关键词 Rough sets theory fuzzy optimal dividing matrix Representatives of samples fuzzy cluster analysis Information system approximate precision.
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
11
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
高山峡谷地区隧道洞口适宜性评价与应用研究
12
作者 刘伟 许广春 +1 位作者 石崎材 宋树宝 《铁道工程学报》 北大核心 2025年第3期60-64,74,共6页
研究目的:青藏高原高山峡谷地区隧道洞口选址面临着极为复杂的地质和环境挑战,需规避不良地质灾害和洪水位,选择围岩稳定的位置,并考虑施工难度,以降低工程风险及成本。本文基于现场地质勘察、无人机测绘等综合勘察技术,结合模糊综合评... 研究目的:青藏高原高山峡谷地区隧道洞口选址面临着极为复杂的地质和环境挑战,需规避不良地质灾害和洪水位,选择围岩稳定的位置,并考虑施工难度,以降低工程风险及成本。本文基于现场地质勘察、无人机测绘等综合勘察技术,结合模糊综合评判法和修正灰色聚类分析法构建隧道洞口选址综合评价方法,利用量化评价方法为隧道洞口的选址提供科学依据。研究结论:(1)考虑岩性、坡度、坡面走向、高程、与山脊线距离、仰坡危岩体规模、与断层距离、与现有公路距离、与对岸相应位置间最短距离9个指标建立评价体系;(2)结合现场地质勘察、专家系统和洞口适宜性定量评价建立隧道洞口选址综合评价方法;(3)相较于单一方法,综合考虑模糊综合评判法和修正灰色聚类分析法的隧道洞口选址评价方法更能反映实际工程特征,提出切实可行的洞口选址建议;(4)本研究成果可应用于山区公路隧道建设。 展开更多
关键词 隧道洞口选址 适宜性评价 模糊综合评判法 修正灰色聚类分析法
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:1
13
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 聚类分析 隐私保护 本地差分隐私 模糊C均值聚类 拉普拉斯机制
在线阅读 下载PDF
基于商空间和信息粒度的Fuzzy聚类分析 被引量:3
14
作者 毛军军 张铃 许义生 《运筹与管理》 CSCD 2004年第4期25-29,共5页
传统聚类分析主要从相似性度量的不同设计和判别函数的选择等方面进行研究。本文从商空间理论和信息粒度原理角度出发,引入分层递阶结构,论述聚类分析的本质以及Fuzzy聚类分析这种软件统计方法。
关键词 商空间理论 fuzzy 信息粒度 聚类分析 分层递阶结构
在线阅读 下载PDF
湖泊营养类型的FUZZY聚类分析 被引量:2
15
作者 陈昌齐 谢红珍 《湖泊科学》 EI CAS CSCD 1992年第2期79-85,共7页
以总硬度、pH、溶氧、化学耗氧、总氮、总磷、浮游植物、透明度8项指标为依据,参照现行湖泊营养类型划分标准,应用fuzzy聚类分析方法对我国42个主要湖泊聚类并划分其营养类型,同时对各类型的指标特征进行了分析。结果表明:在相似水平λ=... 以总硬度、pH、溶氧、化学耗氧、总氮、总磷、浮游植物、透明度8项指标为依据,参照现行湖泊营养类型划分标准,应用fuzzy聚类分析方法对我国42个主要湖泊聚类并划分其营养类型,同时对各类型的指标特征进行了分析。结果表明:在相似水平λ=0.69下,42个湖泊共聚为13类。其中,中、富营养型有较强的相似性,其差异显著的指标为总氮、总磷和化学耗氧量;贫营养型湖泊相似性差,其共同特征是指标中一项或数项显著异于一般营养范围。聚类结果与传统分类基本吻合。 展开更多
关键词 聚类分析 湖泊 营养 类型
在线阅读 下载PDF
东湖生态系统污染状况的FUZZY聚类分析 被引量:3
16
作者 蔡庆华 《水生生物学报》 CAS 1988年第3期193-198,共6页
以水色、透明度、五日生化需氧量、总氮、总磷、悬浮物等感官的和生物学的6个参数为依据,用fuzzy聚类分析方法对武汉东湖生态系统的污染状况进行了分析研究,所获得的结果与实际情况相符。同时也简单地介绍和讨论了用于生态学的fuzzy聚... 以水色、透明度、五日生化需氧量、总氮、总磷、悬浮物等感官的和生物学的6个参数为依据,用fuzzy聚类分析方法对武汉东湖生态系统的污染状况进行了分析研究,所获得的结果与实际情况相符。同时也简单地介绍和讨论了用于生态学的fuzzy聚类分析的一般方法。 展开更多
关键词 东湖 污染状况 五日生化需氧量 生态系统 总磷 悬浮物 总氮 水色 聚类分析 一般方法
在线阅读 下载PDF
设备重要度的Fuzzy聚类分析 被引量:4
17
作者 郭应征 冯世元 《东南大学学报(自然科学版)》 EI CAS CSCD 1995年第3期96-101,共6页
本文在层次分析和Fuzzy集理论的基础上,建立了化工设备重要度的Fuzzy层次分析模型,应用判断矩阵分级求出各指标因素对子层次和目标层次的权重,根据Fuzzy数学中的广义加权海明距离,对化工设备重要度进行了Fuzzy... 本文在层次分析和Fuzzy集理论的基础上,建立了化工设备重要度的Fuzzy层次分析模型,应用判断矩阵分级求出各指标因素对子层次和目标层次的权重,根据Fuzzy数学中的广义加权海明距离,对化工设备重要度进行了Fuzzy聚类分析,得到了符合实际的分类结果。 展开更多
关键词 设备重要度 化工设备 模糊聚类分析
在线阅读 下载PDF
东北地区查干湖流域潜水水化学演化规律及氮磷浓度变化特征
18
作者 苏小四 吴成熔 +4 位作者 王永琦 宋雅智 李宁飞 杨敬爽 马锋敏 《地球科学与环境学报》 北大核心 2025年第2期143-157,共15页
深入了解区域地下水水化学演化及其影响因素,揭示入湖地下水中的氮磷来源和成因,对于解析通过地下水排泄入湖的氮磷贡献和湖泊富营养化治理具有重要意义。以东北地区查干湖流域为研究区,选择与湖水具有密切水力联系的第四系孔隙潜水为... 深入了解区域地下水水化学演化及其影响因素,揭示入湖地下水中的氮磷来源和成因,对于解析通过地下水排泄入湖的氮磷贡献和湖泊富营养化治理具有重要意义。以东北地区查干湖流域为研究区,选择与湖水具有密切水力联系的第四系孔隙潜水为研究对象,结合区域潜水典型水流路径,应用水文地球化学图解法、模糊C均值聚类算法、主成分分析和绝对因子得分-多元线性回归(APCS-MLR)模型,探究了区域潜水水化学空间演化规律和主要影响因素;综合土地利用类型变化和影响因素,讨论了研究区潜水中氮磷组分主要来源和浓度变化原因。结果表明:查干湖流域潜水主要化学类型为HCO_(3)-Ca型,潜水典型径流路径上溶解性总固体(TDS)和主要离子浓度升高,Cl^(-)/Na^(+)质量浓度比值变大,水化学演化主要受控于蒸发浓缩作用、农业活动、溶滤作用和阳离子交换作用;研究区北部大安灌区正将盐碱地改造成水田,施加大量肥料,潜水氮磷组分浓度升高,高值区范围扩大,中西部盐碱地和旱地开发成水田后,潜水环境偏还原,NH_(4)^(+)质量浓度升高;旱地和盐碱地改造为水田后,潜水NO_(3)^(-)、NH_(4)^(+)和PO_(4)^(3-)质量浓度明显增高。基于APCS-MLR模型定量解析结果显示,农业活动对NH_(4)^(+)、PO_(4)^(3-)和NO_(3)^(-)的贡献率分别高达87%、55%和25%。 展开更多
关键词 水化学 潜水 模糊C均值聚类算法 主成分分析 绝对因子得分-多元线性回归模型 东北地区
在线阅读 下载PDF
基于区块链与模糊聚类算法的区域大数据分析技术研究
19
作者 何颖 《现代电子技术》 北大核心 2025年第6期52-56,共5页
金融数据具备非线性、高维度的特点,同时对安全性有较高的要求。文中结合区块链技术和模糊聚类算法,提出一种面向区域互联网金融的异常数据分析模型,该模型由异常数据分析算法和隐私保护算法组成。异常数据分析算法针对模糊均值聚类算... 金融数据具备非线性、高维度的特点,同时对安全性有较高的要求。文中结合区块链技术和模糊聚类算法,提出一种面向区域互联网金融的异常数据分析模型,该模型由异常数据分析算法和隐私保护算法组成。异常数据分析算法针对模糊均值聚类算法处理高维非线性数据能力弱的缺点,使用深度信念网络进行改进,进而提升模型的数据处理能力。隐私保护使用差分隐私保护算法,在不利用背景知识的前提下完成数据的保护,同时保证了数据的可用性。在实验测试中,将所提模糊聚类算法与常用的主流K-Means算法、DPC算法进行了对比,结果表明:所提算法的性能在所有对比算法中最优;与此同时,加入隐私保护算法后对聚类结果的影响保持在0.021以内,充分证明了该算法性能的优越性。 展开更多
关键词 模糊聚类算法 区块链技术 异常数据识别 深度信念网络 差分隐私保护算法 区域数据分析
在线阅读 下载PDF
Fuzzy聚类分析在土壤水盐状态划分中的应用 被引量:1
20
作者 王根绪 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 1992年第3期156-162,共7页
本文提出用 Fuzzy 聚类分析方法来研究土壤水盐状态的区域划分问题,并通过应用实例,论述了该方法的应用过程及其合理性,论证结果表明,这种定量的划分方法不仅在理论上优越于现行的定性分析方法,而且能得到符合实际情况的结果.
关键词 聚类分析 土壤改良 水盐状态
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部