A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive...A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better.展开更多
The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically an...The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically and accurately. Until recently, there have not been methods to identify soil pore structures. This has restricted the development of soil science, particularly regarding pore geometry and spatial distribution. Through the adoption of the fuzzy clustering theory and the establishment of pore identification rules, a novel pore identification method is described to extract pore structures from CT soil images. The robustness of the adaptive fuzzy C-means method (AFCM), the adaptive threshold method, and Image-Pro Plus tools were compared on soil specimens under different conditions, such as frozen, saturated, and dry situations. The results demonstrate that the AFCM method is suitable for identifying pore clusters, especially tiny pores, under various soil conditions. The method would provide an optional technique for the study of soil micromorphology.展开更多
A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of eac...A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of each homogeneous block are extracted for feature. Each inhomogeneous block is split into separate pixels and the mean of neighboring pixels within a window around each pixel and pixel value are extracted for feature. Then cluster of homogeneous blocks and cluster of separate pixels from inhomogeneous blocks are carried out respectively according to different membership functions. In fuzzy clustering stage, the center pixel and center number of the initial clustering are calculated based on histogram by using mean feature. Then different membership functions according to comparative result of block variance are computed. Finally, modified fuzzy c-means with spatial information to complete image segmentation axe used. Experimental results show that the proposed method can achieve better segmental results and has shorter executive time than many well-known methods.展开更多
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar...Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.展开更多
In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for disc...In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression.展开更多
目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clu...目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。展开更多
文摘A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better.
基金supported by the National Natural Science Youth Foundation of China(No.41501283)the Fundamental Research Funds for the Central Universities(2015ZCQGX-04)
文摘The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically and accurately. Until recently, there have not been methods to identify soil pore structures. This has restricted the development of soil science, particularly regarding pore geometry and spatial distribution. Through the adoption of the fuzzy clustering theory and the establishment of pore identification rules, a novel pore identification method is described to extract pore structures from CT soil images. The robustness of the adaptive fuzzy C-means method (AFCM), the adaptive threshold method, and Image-Pro Plus tools were compared on soil specimens under different conditions, such as frozen, saturated, and dry situations. The results demonstrate that the AFCM method is suitable for identifying pore clusters, especially tiny pores, under various soil conditions. The method would provide an optional technique for the study of soil micromorphology.
文摘A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of each homogeneous block are extracted for feature. Each inhomogeneous block is split into separate pixels and the mean of neighboring pixels within a window around each pixel and pixel value are extracted for feature. Then cluster of homogeneous blocks and cluster of separate pixels from inhomogeneous blocks are carried out respectively according to different membership functions. In fuzzy clustering stage, the center pixel and center number of the initial clustering are calculated based on histogram by using mean feature. Then different membership functions according to comparative result of block variance are computed. Finally, modified fuzzy c-means with spatial information to complete image segmentation axe used. Experimental results show that the proposed method can achieve better segmental results and has shorter executive time than many well-known methods.
基金supported by the Natural Science Foundation of China under contact(61233007)
文摘Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly.
基金supported by the National Natural Science Foundation of China under Grant No. 30525030,60701015, and 60736029
文摘In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression.
文摘目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。