期刊文献+
共找到579篇文章
< 1 2 29 >
每页显示 20 50 100
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
1
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
在线阅读 下载PDF
Soil pore identification with the adaptive fuzzy C-means method based on computed tomography images 被引量:5
2
作者 Yue Zhao Qiaoling Han +1 位作者 Yandong Zhao Jinhao Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1043-1052,共10页
The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically an... The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically and accurately. Until recently, there have not been methods to identify soil pore structures. This has restricted the development of soil science, particularly regarding pore geometry and spatial distribution. Through the adoption of the fuzzy clustering theory and the establishment of pore identification rules, a novel pore identification method is described to extract pore structures from CT soil images. The robustness of the adaptive fuzzy C-means method (AFCM), the adaptive threshold method, and Image-Pro Plus tools were compared on soil specimens under different conditions, such as frozen, saturated, and dry situations. The results demonstrate that the AFCM method is suitable for identifying pore clusters, especially tiny pores, under various soil conditions. The method would provide an optional technique for the study of soil micromorphology. 展开更多
关键词 cT soil IMAGES fuzzy c-means fuzzy clustering theory PORE IDENTIFIcATION rule
在线阅读 下载PDF
A fast and effective fuzzy clustering algorithm for color image segmentation 被引量:4
3
作者 王改华 李德华 《Journal of Beijing Institute of Technology》 EI CAS 2012年第4期518-525,共8页
A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of eac... A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of each homogeneous block are extracted for feature. Each inhomogeneous block is split into separate pixels and the mean of neighboring pixels within a window around each pixel and pixel value are extracted for feature. Then cluster of homogeneous blocks and cluster of separate pixels from inhomogeneous blocks are carried out respectively according to different membership functions. In fuzzy clustering stage, the center pixel and center number of the initial clustering are calculated based on histogram by using mean feature. Then different membership functions according to comparative result of block variance are computed. Finally, modified fuzzy c-means with spatial information to complete image segmentation axe used. Experimental results show that the proposed method can achieve better segmental results and has shorter executive time than many well-known methods. 展开更多
关键词 cluster image segmentation fuzzy c-means HISTOGRAM
在线阅读 下载PDF
Research on Wind Power Prediction Modeling Based on Adaptive Feature Entropy Fuzzy Clustering
4
作者 HUANG Haixin KONG Chang 《沈阳理工大学学报》 CAS 2014年第4期75-80,共6页
Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia ar... Wind farm power prediction is proposed based on adaptive feature weight entropy fuzzy clustering algorithm.According to the fuzzy clustering method,a large number of historical data of a wind farm in Inner Mongolia are analyzed and classified.Model of adaptive entropy weight for clustering is built.Wind power prediction model based on adaptive entropy fuzzy clustering feature weights is built.Simulation results show that the proposed method could distinguish the abnormal data and forecast more accurately and compute fastly. 展开更多
关键词 fuzzy c-means clustering adaptive feature weighted ENTROPY wind power prediction
在线阅读 下载PDF
基于改进的模糊C-Means航迹聚类方法研究 被引量:19
5
作者 王超 王明明 王飞 《中国民航大学学报》 CAS 2013年第3期14-18,共5页
为指导飞行程序的改善和发现管制员的指挥模式,在分析历史飞行航迹特征基础上,应用最小描绘长度(MDL)原理对航迹特征点进行划分,运用融合了遗传算法和模拟退火算法的改进的模糊C-Means算法对特征点进行聚类,通过最长公共子序列(LCS)算... 为指导飞行程序的改善和发现管制员的指挥模式,在分析历史飞行航迹特征基础上,应用最小描绘长度(MDL)原理对航迹特征点进行划分,运用融合了遗传算法和模拟退火算法的改进的模糊C-Means算法对特征点进行聚类,通过最长公共子序列(LCS)算法得到航迹相似性矩阵,利用矩阵得到航迹簇,最后形成中心航迹,算例仿真验证了新算法的有效性。 展开更多
关键词 航迹聚类 遗传模拟退火算法 模糊c—Means 最长公共子序列
在线阅读 下载PDF
基于模糊C-means的多视角聚类算法 被引量:2
6
作者 杨欣欣 黄少滨 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2128-2133,共6页
目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构... 目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构数据集的聚类结果。FCM-MVC算法同时利用多个视角信息,自动计算每个视角的权重。研究结果表明:FCM-MVC算法能够有效处理具有聚簇重叠结构的数据集;与已有的3种经典的多视角聚类算法相比,该算法获得的聚类精度更高。 展开更多
关键词 多视角聚类 模糊c-means 数据挖掘
在线阅读 下载PDF
基于模糊C-means聚类的地球化学数据分析 被引量:1
7
作者 孟海东 管世明 徐贯东 《金属矿山》 CAS 北大核心 2012年第4期106-108,143,共4页
采用数据挖掘技术中模糊C-means聚类算法,以地球化学元素为数据对象、样品分析结果为属性值,对某已知金矿区和锡矿区岩石样品的元素组合特征进行了分析。聚类分析得出的元素组合关系与已知地质资料相一致,表明模糊C-means聚类算法能够... 采用数据挖掘技术中模糊C-means聚类算法,以地球化学元素为数据对象、样品分析结果为属性值,对某已知金矿区和锡矿区岩石样品的元素组合特征进行了分析。聚类分析得出的元素组合关系与已知地质资料相一致,表明模糊C-means聚类算法能够客观、有效地发现地球化学元素的组合特征。同时,对位于内蒙古地区某多金属成矿带的地球化学采样数据进行了分析,根据聚类结果推断该地区是寻找金、银多金属矿产资源的目标区域。 展开更多
关键词 数据挖掘 模糊c-means聚类 地球化学元素 元素组合特征
在线阅读 下载PDF
基于超像素的改进FCM电力设备红外图像分割
8
作者 吴晓君 余显喆 +2 位作者 王鹏 赵鹤 李天成 《红外技术》 北大核心 2025年第2期235-242,共8页
针对传统模糊C均值(FCM)算法在图像分割中存在分割精度低、收敛速度慢、对初始聚类中心选取不佳而陷入局部最优等问题,提出一种适用于电力设备红外图像的基于超像素的改进FCM分割方法。首先,采用多特征融合的简单非迭代聚类(SNIC)超像... 针对传统模糊C均值(FCM)算法在图像分割中存在分割精度低、收敛速度慢、对初始聚类中心选取不佳而陷入局部最优等问题,提出一种适用于电力设备红外图像的基于超像素的改进FCM分割方法。首先,采用多特征融合的简单非迭代聚类(SNIC)超像素算法对图像进行预分割,用超像素代替像素表达图像特征,降低后续处理复杂度;其次,运用最大类间方差的思想,选取类间方差最大时灰度直方图最大值对应的灰度值作为改进算法的初始聚类中心,避免生成局部最优解;最后,将多特征融合的SNIC算法与FCM算法结合,实现电力设备红外图像分割。实验结果表明:该算法在设备轮廓和局部高温区域的分割上改善了对比算法存在的欠分割现象,提升了运算效率,为后期电力设备故障诊断奠定基础。 展开更多
关键词 红外图像 模糊c均值聚类 超像素 初始聚类中心
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法
9
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 聚类分析 隐私保护 本地差分隐私 模糊c均值聚类 拉普拉斯机制
在线阅读 下载PDF
基于2型模糊集的粗糙模糊C-means算法
10
作者 鲍杨婉莹 蒋瑜 李冬 《成都信息工程大学学报》 2020年第4期406-411,共6页
聚类算法在图像处理、模式识别等领域有广泛应用,粗糙模糊C-means算法是近年来研究较多的聚类算法。在面对聚类结构不同的样本时,传统的粗糙模糊C-means算法存在聚类簇心偏向性和隶属度选取的问题,使聚类结果不理想。提出一种基于②型... 聚类算法在图像处理、模式识别等领域有广泛应用,粗糙模糊C-means算法是近年来研究较多的聚类算法。在面对聚类结构不同的样本时,传统的粗糙模糊C-means算法存在聚类簇心偏向性和隶属度选取的问题,使聚类结果不理想。提出一种基于②型模糊集的粗糙模糊C-means算法,算法采用②型模糊集理论,计算样本的次隶属度,从而描述样本的深层信息,根据样本最大隶属度和次大隶属度之间的差别,将样本划分到类簇的上下近似集中,根据上下近似集的权重,迭代并重新计算簇心,直到达到设定阈值或者满足算法终止条件。将改进的粗糙模糊C-means算法在人工数据集和UCI数据集上进行实验对比,结果表明改进的粗糙模糊C-means算法具有良好的性能。 展开更多
关键词 聚类 粗糙集 2型模糊集 粗糙模糊c-means
在线阅读 下载PDF
基于模糊C-means聚类的数控机床热误差补偿控制 被引量:1
11
作者 黄苏 《沈阳工程学院学报(自然科学版)》 2021年第3期86-90,96,共6页
数控机床在受热条件下产生热误差,降低了数控机床的稳定性。因此,提出基于模糊C-means聚类的数控机床热误差补偿控制方法,构建数控机床的输出工况信息采集模型,利用热力学传感器采集数控机床热动力学参数,对热误差相关性约束参数进行自... 数控机床在受热条件下产生热误差,降低了数控机床的稳定性。因此,提出基于模糊C-means聚类的数控机床热误差补偿控制方法,构建数控机床的输出工况信息采集模型,利用热力学传感器采集数控机床热动力学参数,对热误差相关性约束参数进行自整定控制,采用模糊C均值聚类方法实现对数控机床热误差约束参数的特征聚类处理。通过提取数控机床热误差补偿的高雷诺数信息分量,在不同的驱动响应控制模型下采用误差反馈补偿方法,实现对数控机床的气动扰动和流场分析,根据模糊C-means聚类结果,实现对数控机床热误差补偿控制。仿真结果表明,采用该方法进行数控机床热误差补偿的输出稳定性较好,误差补偿能力较强,提高了数控机床的加工精准度水平。 展开更多
关键词 模糊c-means聚类 数控机床 热误差 补偿控制
在线阅读 下载PDF
Comparison of Clustering Methods in Yeast Saccharomyces Cerevisiae
12
作者 Wen Wang Ni-Ni Rao Xi Chen Shang-Lei Xu 《Journal of Electronic Science and Technology》 CAS 2010年第2期178-182,共5页
In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for disc... In recent years, microarray technology has been widely applied in biological and clinical studies for simultaneous monitoring of gene expression in thousands of genes. Gene clustering analysis is found useful for discovering groups of correlated genes potentially co-regulated or associated to the disease or conditions under investigation. Many clustering methods including k-means, fuzzy c-means, and hierarchical clustering have been widely used in literatures. Yet no comprehensive comparative study has been performed to evaluate the effectiveness of these methods, specially, in yeast saccharomyces cerevisiae. In this paper, these three gene clustering methods are compared. Classification accuracy and CPU time cost are employed for measuring performance of these algorithms. Our results show that hierarchical clustering outperforms k-means and fuzzy c-means clustering. The analysis provides deep insight to the complicated gene clustering problem of expression profile and serves as a practical guideline for routine microarray cluster analysis of gene expression. 展开更多
关键词 fuzzy c-means hierarchical clustering K-means yeast saecharomyees cerevisiae.
在线阅读 下载PDF
基于深度IFLBP的IFCM聚类图像分割算法
13
作者 兰蓉 赵一倓 +1 位作者 余晓颖 王博 《西安邮电大学学报》 2025年第1期98-106,共9页
针对直觉模糊C-均值(Intuitionistic Fuzzy C-Means,IFCM)聚类算法没有考虑图像的纹理及空间信息的问题,提出一种基于深度直觉模糊局部二值模式(Intuitionistic Fuzzy Local Binary Pattern,IFLBP)的IFCM聚类图像分割算法。定义深度邻... 针对直觉模糊C-均值(Intuitionistic Fuzzy C-Means,IFCM)聚类算法没有考虑图像的纹理及空间信息的问题,提出一种基于深度直觉模糊局部二值模式(Intuitionistic Fuzzy Local Binary Pattern,IFLBP)的IFCM聚类图像分割算法。定义深度邻域的概念,基于深度邻域信息更新邻域像素取值,引入图像的深度直觉模糊纹理特征,并根据图像自身特性设计犹豫阈值的动态获取方式,描述图像纹理信息的不确定性,避免人工设置参数的主观影响。同时,在处理后的特征图提取的纹理信息进行线性和非线性变化的基础上,增强目标与背景的差异,提高分割精度。通过设计图像块间的Jaccard系数,自适应获取纹理项权重,实现图像像素信息与空间信息的有效融合。实验结果表明,所提算法在视觉上有较好的分割效果,且评价指标均达到最优。 展开更多
关键词 图像分割 直觉模糊c-均值聚类 直觉模糊局部纹理特征 深度纹理信息 空间信息
在线阅读 下载PDF
基于FCM及快速迭代收缩阈值算法的平面ECT图像重建
14
作者 张立峰 唐志浩 《计量学报》 CSCD 北大核心 2024年第6期899-906,共8页
为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离... 为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离散小波基(DWT)对灰度值进行稀疏表示,并建立L1正则化模型,采用FISTA进行求解,以实现图像重建;最后将FCM处理后的电容值分别用于Landweber算法、Tikhonov算法进行重建对比。仿真与实验结果表明,该算法重建图像的平均相对误差约为0.0527,平均相关系数约为0.9422,均优于其它算法,且重建图像伪影较少,更接近真实情况;因此,所提算法具有更好的重建效果。。 展开更多
关键词 电容层析成像 平面阵列电容 图像重建 模糊c均值聚类 快速迭代收缩阈值算法 缺陷检测
在线阅读 下载PDF
基于FCM和EO-SVM水轮机尾水管压力脉动特征识别 被引量:1
15
作者 刘茜媛 王利英 +1 位作者 张路遥 曹庆皎 《水电能源科学》 北大核心 2024年第1期162-165,共4页
为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾... 为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾水管压力脉动特征识别中的应用。然后采用模糊C均值聚类算法将待分类的压力脉动特征进行初始聚类,将其分为四类,并依据聚类结果选择最靠近每类中心的样本作为EO-SVM模型的训练样本。将SVM和EO-SVM两种模型的识别分类结果进行比较,验证了所提EO-SVM模型的有效性。 展开更多
关键词 压力脉动 小波包分析 模糊c均值聚类 平衡优化器算法 支持向量机
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
16
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值聚类 SMO算法
在线阅读 下载PDF
基于模糊C均值聚类的高铁动车组电缆终端局部放电识别
17
作者 杨燕花 陈珍宝 +4 位作者 曹晗 张彦林 刘凯 陈奎 高国强 《机车电传动》 2024年第3期156-163,共8页
局部放电检测作为一种诊断车载电缆终端绝缘状态的有效手段,在列车实际运行环境中面临强干扰问题,为此文章提出了一种基于波形参数分析和模糊C均值聚类的车载电缆终端局放脉冲干扰分离策略。在实验室搭建了局部放电测试平台并采用高频... 局部放电检测作为一种诊断车载电缆终端绝缘状态的有效手段,在列车实际运行环境中面临强干扰问题,为此文章提出了一种基于波形参数分析和模糊C均值聚类的车载电缆终端局放脉冲干扰分离策略。在实验室搭建了局部放电测试平台并采用高频电流法(HFCT)获取了电缆终端的局放信号和典型脉冲干扰信号,通过对脉冲单波进行包络处理,提取脉冲的3个参数作为特征向量,然后采用模糊C均值聚类方法对局放信号与脉冲干扰信号进行分离。试验结果表明,该方法能够有效地将局放信号与脉冲干扰信号分离,减小脉冲干扰信号对局部放电检测的影响,对提高局放手段评估车载电缆终端绝缘状态的准确性具有一定意义。 展开更多
关键词 动车组 电缆终端 局部放电 脉冲干扰 模糊c均值聚类
在线阅读 下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法 被引量:1
18
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊c均值聚类 均值滤波 中值滤波 模糊隶属度的稀疏性
在线阅读 下载PDF
基于AVMD与DPC-FCM的旋转机械无监督故障诊断方法 被引量:2
19
作者 武雅曼 谌鹏 +2 位作者 张滇 刘天 唐剑 《装备环境工程》 CAS 2024年第1期114-120,共7页
目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clu... 目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。 展开更多
关键词 变分模态分解算法 模糊c均值 密度峰值聚类 旋转机械 故障诊断
在线阅读 下载PDF
基于二阶混联灵敏度矩阵的ECT图像重建
20
作者 陈达 张立峰 樊振萍 《计量学报》 CSCD 北大核心 2024年第8期1147-1154,共8页
电容层析成像技术求解图像重建问题属于非线性问题。在灵敏度矩阵的推导过程中,通常只保留灵敏度系数的线性部分,但是被忽略的非线性部分同样包含重要的成像信息。为了提高图像重建精度,基于二阶灵敏度系数的数学定义,结合模糊C-均值聚... 电容层析成像技术求解图像重建问题属于非线性问题。在灵敏度矩阵的推导过程中,通常只保留灵敏度系数的线性部分,但是被忽略的非线性部分同样包含重要的成像信息。为了提高图像重建精度,基于二阶灵敏度系数的数学定义,结合模糊C-均值聚类算法和电场中心线理论,建立了二阶混联灵敏度矩阵,并将矩阵引入到Landweber算法中,提出了二阶Landweber算法;最后,进行仿真和静态实验,并与传统的Tikhonov算法和一阶Landweber算法进行对比,结果表明,二阶混联灵敏度矩阵可以提高图像重建精度。 展开更多
关键词 电容层析成像 图像重建 电场中心线 模糊c-均值聚类算法 二阶混联灵敏度矩阵
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部