The subjection function of the fuzzy quantity is bell like,which is on the base of the theory;but during the course of the control,each fuzzy grade should be predigested into a triangle of W=4.
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no...A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.展开更多
A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle o...A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle of sliding mode control and the property of Nussbaum function.The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori.By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance,the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded,with tracking errors converging to zero.展开更多
An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control...An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chippin...For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic展开更多
A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, th...A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure.展开更多
Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy syst...Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.展开更多
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed...Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.展开更多
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T...A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.展开更多
The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are de...The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.展开更多
A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a math...A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.展开更多
A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems...A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems are employed to approximate the unknown parts of the desired virtual controls,and the approximation errors of fuzzy systems are only required to be norm-bounded.The function tanh(·) is introduced to avoid problems associated with sgn(·).The tracking error is guaranteed to be uniformly ultimately bounded with the aid of an additional adaptive compensation term.Chua's circuit system and R o¨ssler system are presented to illustrate the feasibility and effectiveness of the proposed control technique.展开更多
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo...Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.展开更多
Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in indu...Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in industrial application.By adopting novel piecewise fuzzy sets and center-average type-reduction,a simplified adaptive interval Type-2 fuzzy controller involving less computation is developed for practical industrial application.In the proposed controller,the inputs are divided into several subintervals and then two piecewise fuzzy sets are used for each subinterval.With the manner of piecewise fuzzy sets and a novel fuzzy rules inference engine,only part of fuzzy rules are simultaneously activated in one control loop,which exponentially decreases the computation and makes the controller appropriate in industrial application.The simulation and experimental study,involving the popular magnetic levitation platform,shows the predicted system with theoretical stability and good tracking performance.The analysis indicates that there is far less computation of the proposed controller than the traditional adaptive interval Type-2 fuzzy controller,especially when the number of fuzzy rules and fuzzy sets is large,and the controller still maintains good control performance as the traditional one.展开更多
Based on the ant colony system (ACS) algorithm and fuzzy logic control, a new design method for optimal fuzzy PID controller was proposed. In this method, the ACS algorithm was used to optimize the input/output scal...Based on the ant colony system (ACS) algorithm and fuzzy logic control, a new design method for optimal fuzzy PID controller was proposed. In this method, the ACS algorithm was used to optimize the input/output scaling factors of fuzzy PID controller to generate the optimal fuzzy control rules and optimal real-time control action on a given controlled object. The designed controller, called the Fuzzy-ACS PID controller, was used to control the CIP-Ⅰ intelligent leg. The simulation experiments demonstrate that this controller has good control performance. Compared with other three optimal PID controllers designed respectively by using the differential evolution algorithm, the real-coded genetic algorithm, and the simulated annealing, it was verified that the Fuzzy-ACS PID controller has better control performance. Furthermore, the simulation results also verify that the proposed ACS algorithm has quick convergence speed, small solution variation, good dynamic convergence behavior, and high computation efficiency in searching for the optimal input/output scaling factors.展开更多
The problem of decentralized adaptive fuzzy control for a class of time-delayed interconnected nonlinear systems with unknown backlash-like hystersis is discussed. On the basis of the principle of variable structure c...The problem of decentralized adaptive fuzzy control for a class of time-delayed interconnected nonlinear systems with unknown backlash-like hystersis is discussed. On the basis of the principle of variable structure control (VSC) and by using the fuzzy systems with linear adjustable parameters that are used to approximate plant unknown functions, a novel decentralized adaptive fuzzy control strategy with a supervisory controller is developed. A general method, which is modeled the backlash-like hysteresis, is proposed and removes the assumption that the boundedness of disturbance, and the slope of the backlash-like hystersis are known constants. Furthermore, the interconnection term is supposed to be pth-order polynomial in time-delayed states. In addition, the plant dynamic uncertainty and modeling errors are adaptively compensated by adjusting the parameters and gains on-line for each subsystems. By theoretical analysis, it is shown that the closed-loop fuzzy control systems are globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the qu...One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the quality of data after this evaluation is satisfactory with the requirement of decision maker. A fuzzy neural network based research method of data quality evaluation is proposed. First, the criteria for the evaluation of data quality are selected to construct the fuzzy sets of evaluating grades, and then by using the learning ability of NN, the objective evaluation of membership is carried out, which can be used for the effective evaluation of data quality. This research has been used in the platform of 'data report of national compulsory education outlay guarantee' from the Chinese Ministry of Education. This method can be used for the effective evaluation of data quality worldwide, and the data quality situation can be found out more completely, objectively, and in better time by using the method.展开更多
The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy r...The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.展开更多
文摘The subjection function of the fuzzy quantity is bell like,which is on the base of the theory;but during the course of the control,each fuzzy grade should be predigested into a triangle of W=4.
基金Project(2007AA04Z144) supported by the National High-Tech Research and Development Program of ChinaProject(2007421119) supported by the China Postdoctoral Science Foundation
文摘A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.
基金Supported by National Natural Science Foundation of P.R.China(60074013),the Foundation of the Education Bureau of JiangsuProvince(KK0310067&05KJB520152),and the Foundation of Infor-mation Science Subject Group of Yangzhou University(ISG 030606).
文摘A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle of sliding mode control and the property of Nussbaum function.The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori.By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance,the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded,with tracking errors converging to zero.
基金Project(70473068) supported by the National Natural Science Foundation of ChinaProject(05JZD00024) supported by the Major Subject of Ministry of Education, China
文摘An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
文摘For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic
基金Project(51005253) supported by the National Natural Science Foundation of ChinaProject(2007AA04Z344) supported by the National High Technology Research and Development Program of China
文摘A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure.
基金Research financially supported by Changwon National University in 2009
文摘Takagi-Sugeno(T-S) fuzzy model is difficult to be linearized because of membership functions included.So,novel T-S fuzzy state transformation and T-S fuzzy feedback are proposed for the linearization of T-S fuzzy system.The novel T-S fuzzy state transformation is the fuzzy combination of local linear transformation which transforms local linear models in the T-S fuzzy model into the local linear controllable canonical models.The fuzzy combination of local linear controllable canonical model gives controllable canonical T-S fuzzy model and then nonlinear feedback is obtained easily.After the linearization of T-S fuzzy model,a robust H∞ controller with the robustness of sliding model control(SMC) is designed.As a result,controlled T-S fuzzy system shows the performance of H∞ control and the robustness of SMC.
基金Project(51476187)supported by the National Natural Science Foundation of China
文摘Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.
文摘A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.
文摘The problem of designing fuzzy static output feedback controller for T-S discrete-time fuzzy bilinear system (DFBS) is presented. Based on parallel distribution compensation method, some sufficient conditions are derived to guarantee the stability of the overall fuzzy system. The stabilization conditions are further formulated into linear matrix inequality (LMI) so that the desired controller can be easily obtained by using the Matlab LMI toolbox. In comparison with the existing results, the drawbacks, such as coordinate transformation, same output matrices, have been elim- inated. Finally, a simulation example shows that the approach is effective.
文摘A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.
基金supported by the National Natural Science Foundation of China (9071602811001128)
文摘A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems are employed to approximate the unknown parts of the desired virtual controls,and the approximation errors of fuzzy systems are only required to be norm-bounded.The function tanh(·) is introduced to avoid problems associated with sgn(·).The tracking error is guaranteed to be uniformly ultimately bounded with the aid of an additional adaptive compensation term.Chua's circuit system and R o¨ssler system are presented to illustrate the feasibility and effectiveness of the proposed control technique.
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
文摘Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function.
基金Project(51005253) supported by the National Natural Science Foundation of ChinaProject(2012ZX02702006-003) supported by the National Science and Technology Major Program of ChinaProject(JMTZ201101) supported by the Key Laboratory for Precision & Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in industrial application.By adopting novel piecewise fuzzy sets and center-average type-reduction,a simplified adaptive interval Type-2 fuzzy controller involving less computation is developed for practical industrial application.In the proposed controller,the inputs are divided into several subintervals and then two piecewise fuzzy sets are used for each subinterval.With the manner of piecewise fuzzy sets and a novel fuzzy rules inference engine,only part of fuzzy rules are simultaneously activated in one control loop,which exponentially decreases the computation and makes the controller appropriate in industrial application.The simulation and experimental study,involving the popular magnetic levitation platform,shows the predicted system with theoretical stability and good tracking performance.The analysis indicates that there is far less computation of the proposed controller than the traditional adaptive interval Type-2 fuzzy controller,especially when the number of fuzzy rules and fuzzy sets is large,and the controller still maintains good control performance as the traditional one.
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProject(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(05JJ40128) supported by the Natural Science Foundation of Hunan Province, China
文摘Based on the ant colony system (ACS) algorithm and fuzzy logic control, a new design method for optimal fuzzy PID controller was proposed. In this method, the ACS algorithm was used to optimize the input/output scaling factors of fuzzy PID controller to generate the optimal fuzzy control rules and optimal real-time control action on a given controlled object. The designed controller, called the Fuzzy-ACS PID controller, was used to control the CIP-Ⅰ intelligent leg. The simulation experiments demonstrate that this controller has good control performance. Compared with other three optimal PID controllers designed respectively by using the differential evolution algorithm, the real-coded genetic algorithm, and the simulated annealing, it was verified that the Fuzzy-ACS PID controller has better control performance. Furthermore, the simulation results also verify that the proposed ACS algorithm has quick convergence speed, small solution variation, good dynamic convergence behavior, and high computation efficiency in searching for the optimal input/output scaling factors.
基金partially supported by the National Natural Science Foundation of China (60874045,60774017).
文摘The problem of decentralized adaptive fuzzy control for a class of time-delayed interconnected nonlinear systems with unknown backlash-like hystersis is discussed. On the basis of the principle of variable structure control (VSC) and by using the fuzzy systems with linear adjustable parameters that are used to approximate plant unknown functions, a novel decentralized adaptive fuzzy control strategy with a supervisory controller is developed. A general method, which is modeled the backlash-like hysteresis, is proposed and removes the assumption that the boundedness of disturbance, and the slope of the backlash-like hystersis are known constants. Furthermore, the interconnection term is supposed to be pth-order polynomial in time-delayed states. In addition, the plant dynamic uncertainty and modeling errors are adaptively compensated by adjusting the parameters and gains on-line for each subsystems. By theoretical analysis, it is shown that the closed-loop fuzzy control systems are globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金the National Natural Science Foundation of China (60503024 50634010).
文摘One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the quality of data after this evaluation is satisfactory with the requirement of decision maker. A fuzzy neural network based research method of data quality evaluation is proposed. First, the criteria for the evaluation of data quality are selected to construct the fuzzy sets of evaluating grades, and then by using the learning ability of NN, the objective evaluation of membership is carried out, which can be used for the effective evaluation of data quality. This research has been used in the platform of 'data report of national compulsory education outlay guarantee' from the Chinese Ministry of Education. This method can be used for the effective evaluation of data quality worldwide, and the data quality situation can be found out more completely, objectively, and in better time by using the method.
基金supported by the Program for Natural Science Foundation of Beijing (4062030)Young Teacher Research Foundation of North China Electric Power University
文摘The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.