B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
The present study aims to analyze free vibration of thin skew plates made of functionally graded material(FGM)by using the weak form quadrature element method.The material properties vary continuously through the thic...The present study aims to analyze free vibration of thin skew plates made of functionally graded material(FGM)by using the weak form quadrature element method.The material properties vary continuously through the thickness according to a power-law form.A novel FGM skew plate element is formulated according to the neutral surface based plate theory and with the help of the differential quadrature rule.For verifications,Numerical results are compared with available data in literature.Results reveal that the non-dimensional frequency parameters of the FGM skew plates are independent of the power-law exponent and always proportional to those of homogeneous isotropic ones when the coupling and rotary inertias are neglected.In addition,employing the physical neutral surface based plate theory is equivalent to using the middle plane based plate theory with the reduced flexural modulus matrix.展开更多
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The present study aims to analyze free vibration of thin skew plates made of functionally graded material(FGM)by using the weak form quadrature element method.The material properties vary continuously through the thickness according to a power-law form.A novel FGM skew plate element is formulated according to the neutral surface based plate theory and with the help of the differential quadrature rule.For verifications,Numerical results are compared with available data in literature.Results reveal that the non-dimensional frequency parameters of the FGM skew plates are independent of the power-law exponent and always proportional to those of homogeneous isotropic ones when the coupling and rotary inertias are neglected.In addition,employing the physical neutral surface based plate theory is equivalent to using the middle plane based plate theory with the reduced flexural modulus matrix.