Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ...Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to...In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.展开更多
We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a central...We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a centrally symmetric n-dimensional convex body of volume 1 is at least 2^(n)(9/8)^([n/3]).展开更多
Amazake is a sweet and non-alcoholic beverage with a long history in Japan.There are two types of amazake,koji amazake produced from rice koji and sakekasu amazake made from sake lees.Amazake has been suggested to be ...Amazake is a sweet and non-alcoholic beverage with a long history in Japan.There are two types of amazake,koji amazake produced from rice koji and sakekasu amazake made from sake lees.Amazake has been suggested to be a functional food with various health benefits and cosmetic effects.The efficacy of both koji amazake and sakekasu amazake in improving bowel movements and defecation has been well studied.Amazake may be useful as a food with constipation relieving effects.Furthermore,beneficial effects of amazake on skin barrier function and skin water content in humans have been well established in randomized controlled trials.The findings of amazake effects on gut microbiota,intestinal environment and gut barrier function,mainly demonstrated in animal models,suggest a role of substances contained in amazake as prebiotics.Preliminary evidence indicates the potential value of amazake in the management of obesity,metabolic syndrome and nonalcoholic fatty liver disease.Long-term and excessive intake tests have demonstrated that the consumption of koji amazake is safe.There are few concerns regarding weight gain or increases in blood sugar levels.The functional compounds and mechanisms involved in the health effects of amazake need to be identified in future research.展开更多
Plant-based milks are on the rise due to an increased awareness of their sustainability and health benefits.Currently,dairy milk is the most nutritionally complete beverage,but it suffers from the presence of indigest...Plant-based milks are on the rise due to an increased awareness of their sustainability and health benefits.Currently,dairy milk is the most nutritionally complete beverage,but it suffers from the presence of indigestible lactose and allergenic proteins.Coconut milk has been around for a long time,but its application is limited due to a perceived lack of specific nutrients,high saturated fat levels,and low acceptability.Recent evidence indicates,however,that the saturated fat and other plant-based components found in coconut milk are good for metabolic outcomes and brain health.The conversion of coconut milk to yoghurt will further improve its functionality by boosting its existing nutritional qualities.In this article,the nutritional value of coconut milk,as well as its potential downsides,its application as yoghurt,and suggestions for enhancing its nutritional functionality will be examined.展开更多
Background:Climate change is accelerating alterations in forest species and community composition worldwide,especially following extreme events like severe droughts and windstorms.Understanding these effects on subtro...Background:Climate change is accelerating alterations in forest species and community composition worldwide,especially following extreme events like severe droughts and windstorms.Understanding these effects on subtropical forests is crucial for conservation and forest management,but it remains unclear whether the impacts are stochastic or deterministic.Methods:We analyzed a unique dataset from a 1-ha permanent plot in a subtropical monsoon broadleaf evergreen forest in China,monitored over 26 years with six surveys from 1994 to 2020.The forest has been free from anthropogenic disturbances for over 400 years.In each survey,we measured all trees with a diameter at breast height(DBH)≥1 cm,and recorded 11 plant functional traits relating to photosynthesis,wood properties,water use,and nutrient dynamics.Using this data,we calculated species and trait dispersion,assessing short-term(~5years)and long-term(26 years)trends in species and trait composition following severe droughts and windstorm events.Results:Severe droughts,and subsequent droughts,increased both species and trait dispersion,while species composition converged,and trait dispersion remained relatively stable throughout the recovery period.Windstorm events led to increased species dispersion but decreased trait dispersion.We observed a clear directional shift in both species and trait composition under these climatic stressors,with a more pronounced increase in trait dispersion compared to species dispersion.Conclusion:In the short term(~5 years),severe droughts and windstorms increased species composition divergence,while trait composition responses varied.Over 26 years,deterministic processes mainly drove community composition changes,especially for trait composition,although stochastic processes also played a role.These findings suggest enhancing forest resilience to climatic stressors by protecting adaptive species or increasing species diversity in management practices.展开更多
Angelica sinensis,a well-known traditional Chinese medicinal herb with the unique property of being both a medicine and an edible plant,has been widely used for promoting blood circulation,modulating immunity,and reli...Angelica sinensis,a well-known traditional Chinese medicinal herb with the unique property of being both a medicine and an edible plant,has been widely used for promoting blood circulation,modulating immunity,and relieving pain.This review comprehensively investigates the extraction methods,structural characteristics,and biological activities of its primary bioactive components,such as polysaccharides,volatile oils,organic acids,and flavonoids.The biosynthesis pathways of these compounds,along with the key enzymes and transcription factors involved,are investigated to understand the factors influencing their synthesis and accumulation.Additionally,the biological activities of A.sinensis,including hepatoprotective,anti-inflammatory,immunemodulatory,anti-tumor,circulatory benefits,and neuroprotection,along with their underlying mechanisms are introduced.These findings provide a solid foundation for the development of A.sinensis as a valuable resource in functional foods and pharmaceutical products.展开更多
As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly ess...As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly essential. This study presents a novel integrated topological-functional(ITF) algorithm for identifying critical nodes, combining topological metrics such as K-shell decomposition, node information entropy, and neighbor overlapping interaction with the functional attributes of passenger flow operations, while also considering the coupling effects between metro and bus networks. Using the Chengdu metro network as a case study, the effectiveness of the algorithm under different conditions is validated.The results indicate significant differences in passenger flow patterns between working and non-working days, leading to varying sets of critical nodes across these scenarios. Moreover, the ITF algorithm demonstrates a marked improvement in the accuracy of critical node identification compared to existing methods. This conclusion is supported by the analysis of changes in the overall network structure and relative global operational efficiency following targeted attacks on the identified critical nodes. The findings provide valuable insight into urban transportation planning, offering theoretical and practical guidance for improving metro network safety and resilience.展开更多
The recent discovery of type-Ⅶboron-carbon clathrates with calculated superconducting transition temperatures approaching~100 K has sparked interest in exploring new conventional superconductors that may be stabilize...The recent discovery of type-Ⅶboron-carbon clathrates with calculated superconducting transition temperatures approaching~100 K has sparked interest in exploring new conventional superconductors that may be stabilized at ambient pressure.The electronic structure of the clathrate is highly tunable based on the ability to substitute different metal atoms within the cages,which may also be large enough to host small molecules.Here we introduce molecular hydrogen(H_(2))within the clathrate cages and investigate its impact on electron-phonon coupling interactions and the superconducting transition temperature(T_(c)).Our approach involves combining molecular hydrogen with the new diamond-like covalent framework,resulting in a hydrogen-encapsulated clathrate,(H_(2))B_(3)C_(3).A notable characteristic of(H_(2))B_(3)C_(3)is the dynamic behavior of the H_(2)molecules,which exhibit nearly free rotations within the B-C cages,resulting in a dynamic structure that remains cubic on average.The static structure of(H_(2))B_(3)C_(3)(a snapshot in its dynamic trajectory)is calculated to be dynamically stable at ambient and low pressures.Topological analysis of the electron density reveals weak van der Waals interactions between molecular hydrogen and the B-C cages,marginally influencing the electronic structure of the material.The electron count and electronic structure calculations indicate that(H_(2))B_(3)C_(3)is a hole conductor,in which H_(2)molecules donate a portion of their valence electron density to the metallic cage framework.Electron-phonon coupling calculation using the Migdal-Eliashberg theory predicts that(H_(2))B_(3)C_(3)possesses a T_(c) of 46 K under ambient pressure.These results indicate potential for additional light-element substitutions within the type-Ⅶclathrate framework and suggest the possibility of molecular hydrogen as a new approach to optimizing the electronic structures of this new class of superconducting materials.展开更多
Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrog...Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported.In this work,transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts,ranging from single atoms to sub-nanometer dimensions,are explored for hydrogen evolution reaction(HER).The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes.The optimized sample shows low overpotentials of 28,65,and 154 mV at a current densities of 10,100,and 500 m A cm^(-2),a small Tafel slope of 29 m V dec^(-1),a high mass activity of 1203 mA mgPt^(-1)and an excellent turnover frequency of 6.1 s^(-1)in the acidic electrolyte.Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites,increased surface functional groups,faster charge transfer dynamics,and stronger electronic interaction between Pt and MXene,resulting in optimized hydrogen absorption/desorption toward better HER.This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters.展开更多
Edible mushroom proteins are the promising ones with the advantages of complete essential amino acid profile and multiple functional activities.To reinforce their applications in functional food development,this study...Edible mushroom proteins are the promising ones with the advantages of complete essential amino acid profile and multiple functional activities.To reinforce their applications in functional food development,this study comprehensively evaluated the physicochemical and functional properties of protein isolates from 5 mushroom species,i.e.,Pleurotus eryngii(PEP),Pleurotus ostreatus(POP),Lentinula edodes(LEP),Flammulina velutipes(FVP)and Hypsizygus marmoreus(HMP).Results showed that PEP,LEP,FVP,POP and HMP exhibited better protein solubility(PS),water holding capacity(WHC),emulsification activity index(EAI),and foaming capacity(FC)than those of soybean protein and pea protein isolates(PPI).PEP(51.95%)and POP(49.15%)had a higher amount ofβ-sheet structure.Principal component analysis and correlation analysis showed that the seven proteins could be divided into 3 clusters,and WHC,EAI and FC were significantly positively correlated with PS andβ-sheet.The least gelation concentration of PEP(16%)and FVP(16%)at p H 6.0 and 7.0 was similar to PPI,and PEP showed better hardness,springiness and rheological properties than other proteins gels.Overall,our study showed that 5 edible mushroom proteins possessed excellent functionalities(except for gelling capacity),which provided novel insights on unexploited sources of mushroom proteins used as protein-based foods in the food industry.展开更多
Herein,we present the electrocatalytic four-electron hydrogenation of oxalic acid into glycolic acid using black TiO_(2)as an electrocatalyst.Oxalic acid is an abundant compound found in several sources of organic was...Herein,we present the electrocatalytic four-electron hydrogenation of oxalic acid into glycolic acid using black TiO_(2)as an electrocatalyst.Oxalic acid is an abundant compound found in several sources of organic waste.The results showed a high selectivity of black TiO_(2)toward glycolic acid,with the formation of glyoxylic acid being the rate-limiting step (glyoxylic acid is the two-electron intermediate).The highest Faradaic efficiency (FE) of 69.6%±8.3% was achieved at 10.2 mA cm^(-2)in 4 h of electrolysis using an H-type cell operated at room temperature,with 50.2%±3.8% of oxalic acid conversion (degradation kinetic constant k=0.0042±0.0001 min-1),58.8%±7.0%of reaction yield and 1.2±0.18 g L-1of glycolic acid production.A theoretical model of black TiO_(2)coming from anatase TiO_(2)was implemented by introducing Ti3+defects,which gave black TiO_(2)the theoretical capability to easily transform oxalic acid into glycolic acid as experimentally observed.The reaction mechanism was supported and described in detail by density functional theory calculations,which revealed that surface Ti^(3+)states were the main catalytic sites.This is the first time that a detailed step-by-step mechanism at the atomic level has been proposed for this electrocatalytic reaction,which represents a valuable contribution to the understanding of this process of high energy/environmental interest.This is also the first time that black TiO_(2)has been used as an electrocatalyst for this sustainable process.展开更多
Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutri...Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutritional compounds and functional metabolites is crucial for the development of functional foods from medicinal and dietary plants.Nuclear magnetic resonance(NMR)and mass spectrometry(MS)are indispensable and essential technologies that provide an unsurpassed wealth of untargeted identification,quantitative and qualitative analysis,and structural information in the study of food and plant products.In the past decade,the rapid development of modern analytical technology has led to the emergence of new approaches and strategies for natural products discovery.Especially the application of novel NMRand MS-based identification and dereplication strategies aided by artificial intelligence and machine learning algorithms have brought about a significant shift in the natural products discovery process.These developments and changes in the natural products filed have given us insights into how to accurately target and mining nutritional,functional,and bioactive compounds.Thus,we have summarized recent research on novel NMR and MS based strategies and methods focusing on functional compounds,accurate identification and efficient discovery mainly in medicinal and dietary plants.This review could provide a comprehensive perspective for a better understanding of novel strategies and methods based on NMR and MS technologies,which could provide valuable insights and ideas for functional compounds mining.展开更多
The development of dual functional material for cyclic CO_(2)capture and hydrogenation is of great significance for converting diluted CO_(2)into valuable fuels,but suffers from kinetic limitation and deactivation of ...The development of dual functional material for cyclic CO_(2)capture and hydrogenation is of great significance for converting diluted CO_(2)into valuable fuels,but suffers from kinetic limitation and deactivation of adsorbent and catalyst.Herein,we engineered a series of RuNa/γ-Al_(2)O_(3)materials,varying the size of ruthenium from single atoms to clusters/nanoparticles.The coordination environment and structure sensitivity of ruthenium were quantitatively investigated at atomic scale.Our findings reveal that the reduced Ru nanoparticles,approximately 7.1 nm in diameter with a Ru-Ru coordination number of 5.9,exhibit high methane formation activity and selectivity at 340°C.The Ru-Na interfacial sites facilitate CO_(2)migration through a deoxygenation pathway,involving carbonate dissociation,carbonyl formation,and hydrogenation.In-situ experiments and theoretical calculations show that stable carbonyl intermediates on metallic Ru nanoparticles facilitate heterolytic C–O scission and C–H bonding,significantly lowering the energy barrier for activating stored CO_(2).展开更多
Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-at...Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-atom catalysts (SACs) on two-dimensional (2D) materials,are essential.This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga_(2)CoS_(4-x)supported SACs to predict HER catalytic activity.Initially,density functional theory (DFT)calculations showed that 2D Ga_(2)CoS4is inactive for HER.However,defective Ga_(2)CoS_(4-x)(x=0–0.25)monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs),with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C,which typically exhibits an overpotential of around 50 m V in the acidic electrolyte,when the concentration of surface SV is lower than 8.3%.SVs generate spin-polarized states near the Fermi level,making them effective HER sites.We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga_(2)CoS_(4-x).Using DFT data from 18 SACs,an ML model with high prediction accuracy and reduced computation time was developed.An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified.This study thus provides a framework for screening SACs on 2D materials,enhancing catalyst design.展开更多
Lonicera japonica(honeysuckle)is a traditional Chinese medicinal food,in which the main active ingredients are phenolic acids,polysaccharides,flavonoids,and volatile oils.They have various biological activities,includ...Lonicera japonica(honeysuckle)is a traditional Chinese medicinal food,in which the main active ingredients are phenolic acids,polysaccharides,flavonoids,and volatile oils.They have various biological activities,including antiviral,antibacterial,antioxidant,hypoglycemic and lipid-lowering,and anti-inflammatory effects.This review summarizes the health effects and pharmacodynamic mechanisms of L.japonica extracts and the major active ingredients in these extracts,and the structures,metabolic process in vivo,and biotransformation processes of these compounds.In addition,the current status of the development of L.japonica-related functional foods is summarized.The aim is to provide a theoretical basis and reference for the further development and use of the active ingredients in L.japonica as functional foods for disease prevention and treatment.展开更多
The survival strategy of plants is to adjust their functional traits to adapt to the environment.However,these traits and survival strategies of evergreen broad-leaved forest species are not well understood.This study...The survival strategy of plants is to adjust their functional traits to adapt to the environment.However,these traits and survival strategies of evergreen broad-leaved forest species are not well understood.This study examined 10 leaf functional traits(LFTs)of 70 common plant species in an evergreen broad-leaved forest in Huangshan Mountain to decipher their adaptive strategies.The phylogenetic signals of these LFTs were assessed and phylogenetically independent contrasts(PIC)and correlation analyses were carried out.LFTs were analyzed to determine their CSR(C:competitor,S:stress-tolerator,R:ruderal)strategies.The results show that plant species exhibit different leaf functional traits and ecological strategies(nine strategies were identified;the most abundant were S/CS and S/CSR strategies).Some traits showed significant phylogenetic signals,indicating the effect of phylogeny on LFTs to an extent.Trait variations among species suggest distinct adaptation strategies to environmental changes.The study species were mainly clustered on the C-S strategy axis,with a high S component.Species leaning toward the C-strategy end(e.g.,deciduous species),favored a resource acquisition strategy characterized by higher specific leaf area(SLA),greater nutrient contents(N and P),lower leaf dry matter content(LDMC),and reduced nutrient utilization efficiency(C:N and C:P).Conversely,species closer to the S-strategy end(e.g.,evergreen species)usually adopted a resource conservative strategy with trait combinations contrary to those of C-strategy species.Overall,this study corroborated the applicability of the CSR strategy at a local scale and provides insights into the varied trait combinations and ecological strategies employed by plant species to adapt to their environment.These findings contribute to a better understanding of the mechanisms involved in biodiversity maintenance.展开更多
We report the structural,mechanical and electromagnetic properties of the intermetallic compound Mn_(23)C_(6).The bulk Mn_(23)C_(6)sample was synthesized using high temperature high pressure quenching method(HTHPQM),a...We report the structural,mechanical and electromagnetic properties of the intermetallic compound Mn_(23)C_(6).The bulk Mn_(23)C_(6)sample was synthesized using high temperature high pressure quenching method(HTHPQM),and investigated in detail by x-ray diffraction,electron microscope,magnetization and electrical resistivity measurements,etc.First-principles calculation based on density functional theory ab intio simulation was carried out to calculate the bonding and electromagnetic properties of Mn_(23)C_(6).Based on our experimental and simulated results,the Mn_(23)C_(6)in this work is single phase of a faced-centered cubic structure with space group Fm-3m(No.225).Determined by SEM and TEM,the bulk sample consists of monocrystal Mn_(23)C_(6)crystals with 2-15μm grain sizes,it is the quick quenching method in the synthesizing process that brings such small crystal grain size.Archimedes method gives its density of 7.14 g/cm^(3),95.74%of its theoretically calculated density 7.458 g/cm^(3).Owing to the abundant Mn 3d electrons and a framework of strongly linked Mn atoms in Mn_(23)C_(6),the electrical conductivity is up to 8.47×10^(-4)Ω·m,which shows that Mn_(23)C_(6)is a good conductor.Our magnetic susceptibility analyses reveal a magnetization peak in the M-T curve at 104 K,combined with the M-H curve and Curie-Weiss law,this peak usually means the transformation between paramagnetic and antiferromagnetic orders.To gain an insight into the mechanism of the magnetic phase transition,we calculated the magnetic properties,and the results show that different from normal antiferromagnetic order,the magnetic orders in Mn_(23)C_(6)consist of three parts,the direct ferromagnetic and antiferromagnetic exchange coupling interactions between Mn atoms,and the indirect antiferromagnetic super-exchange interaction between Mn and C atoms.Therefore,we reveal that the Mn_(23)C_(6)is a complex magnetic competition system including different magnetic orders and interactions,instead of the normal long-range antiferromagnetic order.展开更多
基金supported by the National Natural Science Foundation of China(No.51972162)the Fundamental Research Funds for the Central Universities(No.2024300440).
文摘Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
文摘In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.
文摘We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a centrally symmetric n-dimensional convex body of volume 1 is at least 2^(n)(9/8)^([n/3]).
文摘Amazake is a sweet and non-alcoholic beverage with a long history in Japan.There are two types of amazake,koji amazake produced from rice koji and sakekasu amazake made from sake lees.Amazake has been suggested to be a functional food with various health benefits and cosmetic effects.The efficacy of both koji amazake and sakekasu amazake in improving bowel movements and defecation has been well studied.Amazake may be useful as a food with constipation relieving effects.Furthermore,beneficial effects of amazake on skin barrier function and skin water content in humans have been well established in randomized controlled trials.The findings of amazake effects on gut microbiota,intestinal environment and gut barrier function,mainly demonstrated in animal models,suggest a role of substances contained in amazake as prebiotics.Preliminary evidence indicates the potential value of amazake in the management of obesity,metabolic syndrome and nonalcoholic fatty liver disease.Long-term and excessive intake tests have demonstrated that the consumption of koji amazake is safe.There are few concerns regarding weight gain or increases in blood sugar levels.The functional compounds and mechanisms involved in the health effects of amazake need to be identified in future research.
基金Universiti Putra Malaysia Inisiatif Putra Siswazah Grant,with a reference to UPM.RMC.800-2/1/2022/GPIPS/9740400Ministry of Higher Education,Malaysia(01-01-20-2323FR,with reference code:FRGS/1/2020/STG01/UPM/02/2)for the financial support。
文摘Plant-based milks are on the rise due to an increased awareness of their sustainability and health benefits.Currently,dairy milk is the most nutritionally complete beverage,but it suffers from the presence of indigestible lactose and allergenic proteins.Coconut milk has been around for a long time,but its application is limited due to a perceived lack of specific nutrients,high saturated fat levels,and low acceptability.Recent evidence indicates,however,that the saturated fat and other plant-based components found in coconut milk are good for metabolic outcomes and brain health.The conversion of coconut milk to yoghurt will further improve its functionality by boosting its existing nutritional qualities.In this article,the nutritional value of coconut milk,as well as its potential downsides,its application as yoghurt,and suggestions for enhancing its nutritional functionality will be examined.
基金supported by National Natural Science Foundation of China(Nos.42130506,42071031)the Special Technology Innovation Fund of Carbon Peak and Carbon Neutrality in Jiangsu Province(No.BK20231515)。
文摘Background:Climate change is accelerating alterations in forest species and community composition worldwide,especially following extreme events like severe droughts and windstorms.Understanding these effects on subtropical forests is crucial for conservation and forest management,but it remains unclear whether the impacts are stochastic or deterministic.Methods:We analyzed a unique dataset from a 1-ha permanent plot in a subtropical monsoon broadleaf evergreen forest in China,monitored over 26 years with six surveys from 1994 to 2020.The forest has been free from anthropogenic disturbances for over 400 years.In each survey,we measured all trees with a diameter at breast height(DBH)≥1 cm,and recorded 11 plant functional traits relating to photosynthesis,wood properties,water use,and nutrient dynamics.Using this data,we calculated species and trait dispersion,assessing short-term(~5years)and long-term(26 years)trends in species and trait composition following severe droughts and windstorm events.Results:Severe droughts,and subsequent droughts,increased both species and trait dispersion,while species composition converged,and trait dispersion remained relatively stable throughout the recovery period.Windstorm events led to increased species dispersion but decreased trait dispersion.We observed a clear directional shift in both species and trait composition under these climatic stressors,with a more pronounced increase in trait dispersion compared to species dispersion.Conclusion:In the short term(~5 years),severe droughts and windstorms increased species composition divergence,while trait composition responses varied.Over 26 years,deterministic processes mainly drove community composition changes,especially for trait composition,although stochastic processes also played a role.These findings suggest enhancing forest resilience to climatic stressors by protecting adaptive species or increasing species diversity in management practices.
基金funded by National Key R&D Program of China(2022YFF1100301,2023YFF1104403)Key R&D Project of Henan Province(231111112100)。
文摘Angelica sinensis,a well-known traditional Chinese medicinal herb with the unique property of being both a medicine and an edible plant,has been widely used for promoting blood circulation,modulating immunity,and relieving pain.This review comprehensively investigates the extraction methods,structural characteristics,and biological activities of its primary bioactive components,such as polysaccharides,volatile oils,organic acids,and flavonoids.The biosynthesis pathways of these compounds,along with the key enzymes and transcription factors involved,are investigated to understand the factors influencing their synthesis and accumulation.Additionally,the biological activities of A.sinensis,including hepatoprotective,anti-inflammatory,immunemodulatory,anti-tumor,circulatory benefits,and neuroprotection,along with their underlying mechanisms are introduced.These findings provide a solid foundation for the development of A.sinensis as a valuable resource in functional foods and pharmaceutical products.
基金Project supported by the National Natural Science Foundation of China (Grant No. 71971150)the Project of Research Center for System Sciences and Enterprise Development (Grant No. Xq16B05)the Fundamental Research Funds for the Central Universities of China (Grant No. SXYPY202313)。
文摘As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly essential. This study presents a novel integrated topological-functional(ITF) algorithm for identifying critical nodes, combining topological metrics such as K-shell decomposition, node information entropy, and neighbor overlapping interaction with the functional attributes of passenger flow operations, while also considering the coupling effects between metro and bus networks. Using the Chengdu metro network as a case study, the effectiveness of the algorithm under different conditions is validated.The results indicate significant differences in passenger flow patterns between working and non-working days, leading to varying sets of critical nodes across these scenarios. Moreover, the ITF algorithm demonstrates a marked improvement in the accuracy of critical node identification compared to existing methods. This conclusion is supported by the analysis of changes in the overall network structure and relative global operational efficiency following targeted attacks on the identified critical nodes. The findings provide valuable insight into urban transportation planning, offering theoretical and practical guidance for improving metro network safety and resilience.
基金supported by Carnegie Canada and Natural Sciences and Engineering Research Council of Canada(NSERC)support from the U.S.Department of Energy(DOE),Office of Science,Basic Energy Sciences,under Award No.DESC0020683。
文摘The recent discovery of type-Ⅶboron-carbon clathrates with calculated superconducting transition temperatures approaching~100 K has sparked interest in exploring new conventional superconductors that may be stabilized at ambient pressure.The electronic structure of the clathrate is highly tunable based on the ability to substitute different metal atoms within the cages,which may also be large enough to host small molecules.Here we introduce molecular hydrogen(H_(2))within the clathrate cages and investigate its impact on electron-phonon coupling interactions and the superconducting transition temperature(T_(c)).Our approach involves combining molecular hydrogen with the new diamond-like covalent framework,resulting in a hydrogen-encapsulated clathrate,(H_(2))B_(3)C_(3).A notable characteristic of(H_(2))B_(3)C_(3)is the dynamic behavior of the H_(2)molecules,which exhibit nearly free rotations within the B-C cages,resulting in a dynamic structure that remains cubic on average.The static structure of(H_(2))B_(3)C_(3)(a snapshot in its dynamic trajectory)is calculated to be dynamically stable at ambient and low pressures.Topological analysis of the electron density reveals weak van der Waals interactions between molecular hydrogen and the B-C cages,marginally influencing the electronic structure of the material.The electron count and electronic structure calculations indicate that(H_(2))B_(3)C_(3)is a hole conductor,in which H_(2)molecules donate a portion of their valence electron density to the metallic cage framework.Electron-phonon coupling calculation using the Migdal-Eliashberg theory predicts that(H_(2))B_(3)C_(3)possesses a T_(c) of 46 K under ambient pressure.These results indicate potential for additional light-element substitutions within the type-Ⅶclathrate framework and suggest the possibility of molecular hydrogen as a new approach to optimizing the electronic structures of this new class of superconducting materials.
基金the final support of ARC DP220103045the startup support of KFUPMPrince Sultan University for their support。
文摘Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported.In this work,transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts,ranging from single atoms to sub-nanometer dimensions,are explored for hydrogen evolution reaction(HER).The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes.The optimized sample shows low overpotentials of 28,65,and 154 mV at a current densities of 10,100,and 500 m A cm^(-2),a small Tafel slope of 29 m V dec^(-1),a high mass activity of 1203 mA mgPt^(-1)and an excellent turnover frequency of 6.1 s^(-1)in the acidic electrolyte.Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites,increased surface functional groups,faster charge transfer dynamics,and stronger electronic interaction between Pt and MXene,resulting in optimized hydrogen absorption/desorption toward better HER.This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters.
基金supported by the special fund of Jiangsu Province for the transformation of scientific and technological achievements(BA2021062)Jiangsu agricultural science and technology independent innovation fund(CX(22)2007)。
文摘Edible mushroom proteins are the promising ones with the advantages of complete essential amino acid profile and multiple functional activities.To reinforce their applications in functional food development,this study comprehensively evaluated the physicochemical and functional properties of protein isolates from 5 mushroom species,i.e.,Pleurotus eryngii(PEP),Pleurotus ostreatus(POP),Lentinula edodes(LEP),Flammulina velutipes(FVP)and Hypsizygus marmoreus(HMP).Results showed that PEP,LEP,FVP,POP and HMP exhibited better protein solubility(PS),water holding capacity(WHC),emulsification activity index(EAI),and foaming capacity(FC)than those of soybean protein and pea protein isolates(PPI).PEP(51.95%)and POP(49.15%)had a higher amount ofβ-sheet structure.Principal component analysis and correlation analysis showed that the seven proteins could be divided into 3 clusters,and WHC,EAI and FC were significantly positively correlated with PS andβ-sheet.The least gelation concentration of PEP(16%)and FVP(16%)at p H 6.0 and 7.0 was similar to PPI,and PEP showed better hardness,springiness and rheological properties than other proteins gels.Overall,our study showed that 5 edible mushroom proteins possessed excellent functionalities(except for gelling capacity),which provided novel insights on unexploited sources of mushroom proteins used as protein-based foods in the food industry.
基金DGAPA (Dirección General de Asuntos del Personal Acadé-mico) under Projects No. IA103521, IA209223 and IN111722Supercomputing Department of the Universidad Nacional Autónoma de México for the computing resources under Projects No. LANCAD-UNAM-DGTIC-427 and LANCAD-UNAM-DGTIC-370CONAHCYT-México for their postdoctoral fellowships。
文摘Herein,we present the electrocatalytic four-electron hydrogenation of oxalic acid into glycolic acid using black TiO_(2)as an electrocatalyst.Oxalic acid is an abundant compound found in several sources of organic waste.The results showed a high selectivity of black TiO_(2)toward glycolic acid,with the formation of glyoxylic acid being the rate-limiting step (glyoxylic acid is the two-electron intermediate).The highest Faradaic efficiency (FE) of 69.6%±8.3% was achieved at 10.2 mA cm^(-2)in 4 h of electrolysis using an H-type cell operated at room temperature,with 50.2%±3.8% of oxalic acid conversion (degradation kinetic constant k=0.0042±0.0001 min-1),58.8%±7.0%of reaction yield and 1.2±0.18 g L-1of glycolic acid production.A theoretical model of black TiO_(2)coming from anatase TiO_(2)was implemented by introducing Ti3+defects,which gave black TiO_(2)the theoretical capability to easily transform oxalic acid into glycolic acid as experimentally observed.The reaction mechanism was supported and described in detail by density functional theory calculations,which revealed that surface Ti^(3+)states were the main catalytic sites.This is the first time that a detailed step-by-step mechanism at the atomic level has been proposed for this electrocatalytic reaction,which represents a valuable contribution to the understanding of this process of high energy/environmental interest.This is also the first time that black TiO_(2)has been used as an electrocatalyst for this sustainable process.
基金financially supported by the National Key R&D Program of China(2022YFF1100301)Major Science and Technology Project of Henan Province(231100310200)+1 种基金National Natural Science Foundation of China(32370426)Yunnan Province Science and Technology Department(202305AH340005),and Dr Plant。
文摘Medicinal and dietary plants provide numerous nutritional and functional compounds and also have various potential health benefits to humanity.The specific and efficient techniques for accurate identification of nutritional compounds and functional metabolites is crucial for the development of functional foods from medicinal and dietary plants.Nuclear magnetic resonance(NMR)and mass spectrometry(MS)are indispensable and essential technologies that provide an unsurpassed wealth of untargeted identification,quantitative and qualitative analysis,and structural information in the study of food and plant products.In the past decade,the rapid development of modern analytical technology has led to the emergence of new approaches and strategies for natural products discovery.Especially the application of novel NMRand MS-based identification and dereplication strategies aided by artificial intelligence and machine learning algorithms have brought about a significant shift in the natural products discovery process.These developments and changes in the natural products filed have given us insights into how to accurately target and mining nutritional,functional,and bioactive compounds.Thus,we have summarized recent research on novel NMR and MS based strategies and methods focusing on functional compounds,accurate identification and efficient discovery mainly in medicinal and dietary plants.This review could provide a comprehensive perspective for a better understanding of novel strategies and methods based on NMR and MS technologies,which could provide valuable insights and ideas for functional compounds mining.
基金National Key R&D Program of China(2022YFE0105900)National Natural Science Foundation of China(52306179)+1 种基金Science and Technology Innovation Program of Hunan Province(2021RC4006)High Performance Computing Center of Central South University。
文摘The development of dual functional material for cyclic CO_(2)capture and hydrogenation is of great significance for converting diluted CO_(2)into valuable fuels,but suffers from kinetic limitation and deactivation of adsorbent and catalyst.Herein,we engineered a series of RuNa/γ-Al_(2)O_(3)materials,varying the size of ruthenium from single atoms to clusters/nanoparticles.The coordination environment and structure sensitivity of ruthenium were quantitatively investigated at atomic scale.Our findings reveal that the reduced Ru nanoparticles,approximately 7.1 nm in diameter with a Ru-Ru coordination number of 5.9,exhibit high methane formation activity and selectivity at 340°C.The Ru-Na interfacial sites facilitate CO_(2)migration through a deoxygenation pathway,involving carbonate dissociation,carbonyl formation,and hydrogenation.In-situ experiments and theoretical calculations show that stable carbonyl intermediates on metallic Ru nanoparticles facilitate heterolytic C–O scission and C–H bonding,significantly lowering the energy barrier for activating stored CO_(2).
文摘Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-atom catalysts (SACs) on two-dimensional (2D) materials,are essential.This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga_(2)CoS_(4-x)supported SACs to predict HER catalytic activity.Initially,density functional theory (DFT)calculations showed that 2D Ga_(2)CoS4is inactive for HER.However,defective Ga_(2)CoS_(4-x)(x=0–0.25)monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs),with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C,which typically exhibits an overpotential of around 50 m V in the acidic electrolyte,when the concentration of surface SV is lower than 8.3%.SVs generate spin-polarized states near the Fermi level,making them effective HER sites.We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga_(2)CoS_(4-x).Using DFT data from 18 SACs,an ML model with high prediction accuracy and reduced computation time was developed.An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified.This study thus provides a framework for screening SACs on 2D materials,enhancing catalyst design.
基金supports from the National Natural Science Foundation of China(82130112,U24A20789)Beijing Hospitals Authority Ascent Plan(DFL20190702)Youth Beijing Scholar(2022-051)。
文摘Lonicera japonica(honeysuckle)is a traditional Chinese medicinal food,in which the main active ingredients are phenolic acids,polysaccharides,flavonoids,and volatile oils.They have various biological activities,including antiviral,antibacterial,antioxidant,hypoglycemic and lipid-lowering,and anti-inflammatory effects.This review summarizes the health effects and pharmacodynamic mechanisms of L.japonica extracts and the major active ingredients in these extracts,and the structures,metabolic process in vivo,and biotransformation processes of these compounds.In addition,the current status of the development of L.japonica-related functional foods is summarized.The aim is to provide a theoretical basis and reference for the further development and use of the active ingredients in L.japonica as functional foods for disease prevention and treatment.
基金supported by the Special Foundation for National Science and Technology Basic Resources Investigation of China(2019FY202300)the Biodiversity Survey,Observation and Assessment Project of the Ministry of Ecology and Environment(2110404).
文摘The survival strategy of plants is to adjust their functional traits to adapt to the environment.However,these traits and survival strategies of evergreen broad-leaved forest species are not well understood.This study examined 10 leaf functional traits(LFTs)of 70 common plant species in an evergreen broad-leaved forest in Huangshan Mountain to decipher their adaptive strategies.The phylogenetic signals of these LFTs were assessed and phylogenetically independent contrasts(PIC)and correlation analyses were carried out.LFTs were analyzed to determine their CSR(C:competitor,S:stress-tolerator,R:ruderal)strategies.The results show that plant species exhibit different leaf functional traits and ecological strategies(nine strategies were identified;the most abundant were S/CS and S/CSR strategies).Some traits showed significant phylogenetic signals,indicating the effect of phylogeny on LFTs to an extent.Trait variations among species suggest distinct adaptation strategies to environmental changes.The study species were mainly clustered on the C-S strategy axis,with a high S component.Species leaning toward the C-strategy end(e.g.,deciduous species),favored a resource acquisition strategy characterized by higher specific leaf area(SLA),greater nutrient contents(N and P),lower leaf dry matter content(LDMC),and reduced nutrient utilization efficiency(C:N and C:P).Conversely,species closer to the S-strategy end(e.g.,evergreen species)usually adopted a resource conservative strategy with trait combinations contrary to those of C-strategy species.Overall,this study corroborated the applicability of the CSR strategy at a local scale and provides insights into the varied trait combinations and ecological strategies employed by plant species to adapt to their environment.These findings contribute to a better understanding of the mechanisms involved in biodiversity maintenance.
文摘We report the structural,mechanical and electromagnetic properties of the intermetallic compound Mn_(23)C_(6).The bulk Mn_(23)C_(6)sample was synthesized using high temperature high pressure quenching method(HTHPQM),and investigated in detail by x-ray diffraction,electron microscope,magnetization and electrical resistivity measurements,etc.First-principles calculation based on density functional theory ab intio simulation was carried out to calculate the bonding and electromagnetic properties of Mn_(23)C_(6).Based on our experimental and simulated results,the Mn_(23)C_(6)in this work is single phase of a faced-centered cubic structure with space group Fm-3m(No.225).Determined by SEM and TEM,the bulk sample consists of monocrystal Mn_(23)C_(6)crystals with 2-15μm grain sizes,it is the quick quenching method in the synthesizing process that brings such small crystal grain size.Archimedes method gives its density of 7.14 g/cm^(3),95.74%of its theoretically calculated density 7.458 g/cm^(3).Owing to the abundant Mn 3d electrons and a framework of strongly linked Mn atoms in Mn_(23)C_(6),the electrical conductivity is up to 8.47×10^(-4)Ω·m,which shows that Mn_(23)C_(6)is a good conductor.Our magnetic susceptibility analyses reveal a magnetization peak in the M-T curve at 104 K,combined with the M-H curve and Curie-Weiss law,this peak usually means the transformation between paramagnetic and antiferromagnetic orders.To gain an insight into the mechanism of the magnetic phase transition,we calculated the magnetic properties,and the results show that different from normal antiferromagnetic order,the magnetic orders in Mn_(23)C_(6)consist of three parts,the direct ferromagnetic and antiferromagnetic exchange coupling interactions between Mn atoms,and the indirect antiferromagnetic super-exchange interaction between Mn and C atoms.Therefore,we reveal that the Mn_(23)C_(6)is a complex magnetic competition system including different magnetic orders and interactions,instead of the normal long-range antiferromagnetic order.