To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. ...To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. First the physical essence of aliasing that occurs is analyzed; second the interpolation algorithm model is setup based on the Hamming window; then the fast implementation of the algorithm using the Newton iteration method is given. Using the numerical simulation the feasibility of algorithm is validated. Finally, the electrical circuit experiment shows the practicality of the algorithm in the electrical engineering.展开更多
In general, the orientation interpolation of industrial robots has been done based on Euler angle system which can result in singular point (so-called Gimbal Lock). However, quaternion interpolation has the advantag...In general, the orientation interpolation of industrial robots has been done based on Euler angle system which can result in singular point (so-called Gimbal Lock). However, quaternion interpolation has the advantage of natural (specifically smooth) orientation interpolation without Gimbal Lock. This work presents the application of quatemion interpolation, specifically Spherical Linear IntERPolation (SLERP), to the orientation control of the 6-axis articulated robot (RS2) using LabVIEW and RecurDyn. For the comparison of SLERP with linear Euler interpolation in the view of smooth movement (profile) of joint angles (torques), the two methods are dynamically simulated on RS2 by using both LabVIEW and RecurDyn. Finally, our original work, specifically the implementation of SLERP and linear Euler interpolation on the actual robot, i.e. RS2, is done using LabVIEW motion control tool kit. The SLERP orientation control is shown to be effective in terms of smooth joint motion and torque when compared to a conventional (linear) Euler interpolation.展开更多
Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source ima...Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches.展开更多
A new seismic ray-tracing method is put forward based on parabolic travel-time interpolation(PTI) method, which is more accurate than the linear travel-time interpolation (LTI) method. Both PTI method and LTI method a...A new seismic ray-tracing method is put forward based on parabolic travel-time interpolation(PTI) method, which is more accurate than the linear travel-time interpolation (LTI) method. Both PTI method and LTI method are used to compute seismic travel-time and ray-path in a 2-D grid cell model. Firstly, some basic concepts are introduced. The calculations of travel-time and ray-path are carried out only at cell boundaries. So, the ray-path is always straight in the same cells with uniform velocity. Two steps are applied in PTI and LTI method, step 1 computes travel-time and step 2 traces ray-path. Then, the derivation of LTI formulas is described. Because of the presence of refraction wave in shot cell, the formula aiming at shot cell is also derived. Finally, PTI method is presented. The calculation of PTI method is more complex than that of LTI method, but the error is limited. The results of numerical model show that PTI method can trace ray-path more accurately and efficiently than LTI method does.展开更多
This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function cons...This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function constructed of the total energy of null subcarriers through discrete Fourier transform (DFT) is proposed. The frequencies of null subcarriers are identified from non-uniform Doppler shift at each tentative scaling factor. Then it is proved that the cost function can be fitted as a quadratic polynomial near the global minimum. An accurate Doppler scale estimation is achieved by the location of the global scarifying precision and increasing the computation minimum through polynomial interpolation, without complexity. A shallow water experiment is conducted to demonstrate the performance of the proposed method. Excellent performance results are obtained in ultrawideband UWA channels with a relative bandwidth of 67%, when the transmitter and the receiver are moving at a relative speed of 5 kn, which validates the proposed method.展开更多
In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of...In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy.展开更多
In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information ...In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.展开更多
Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approxim...Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approximation methods were used to flatten the strip for the generation of a smooth pattern.This search approach is very simple,and the geodesic line could be easily attained by the proposed method without the need for a difficult computation method.Smooth cutting patterning can also be generated by spline approximation without the noise in discrete nodal information.Additionally,the geodesic cutting pattern saved about 21%of the required area for the catenary model due to the reduction of the curvature of the planar pattern seam line.展开更多
Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.I...Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.展开更多
Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal val...Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal values. To accomplish this, a new grey incidence model, called the grey dynamic incidence model GDIM(t), is constructed for determining whether the factors are effective to the known factor and what the time lag is between a useful factor and the specified sequence. Based on the results of the GDIM(t) model, two programming problems are designed to obtain the upper and lower bounds of the unknown or abnormal values which are regarded as grey numbers. The solutions based on the particle swarm optimization(PSO) for the nonlinear programming problems are given. To explain how it can be used in practice, this new grey interpolation approach is applied to correct an abnormal value in the sequence of an agriculture environment problem.展开更多
This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By u...This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.展开更多
Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and the...Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and their influences are not fully investigated yet.In this work,three main factors,i.e.,the shape parameters,the influence domain size,and the nodal distribution,on the accuracy of the radial point interpolation method(RPIM)are systematically studied and conclusive results are obtained.First,the effect of shape parameters(R,q)of the multi-quadric basis function on the accuracy of RPIM is examined via global search.A new interpolation error index,closely related to the accuracy of RPIM,is proposed.The distribution of various error indexes on the R q plane shows that shape parameters q[1.2,1.8]and R[0,1.5]can give good results for general 3-D analysis.This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics.Second,through numerical experiments,an average of 30 40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics.Third,it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation.Nodal distributions with better uniformity give better results.Furthermore,how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.展开更多
基金the National Natural Science Foundation of China (90407007 60372001).
文摘To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. First the physical essence of aliasing that occurs is analyzed; second the interpolation algorithm model is setup based on the Hamming window; then the fast implementation of the algorithm using the Newton iteration method is given. Using the numerical simulation the feasibility of algorithm is validated. Finally, the electrical circuit experiment shows the practicality of the algorithm in the electrical engineering.
基金Project supported by the Second Stage of Brain Korea 21 Projectssupported by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology (2011-0013902)
文摘In general, the orientation interpolation of industrial robots has been done based on Euler angle system which can result in singular point (so-called Gimbal Lock). However, quaternion interpolation has the advantage of natural (specifically smooth) orientation interpolation without Gimbal Lock. This work presents the application of quatemion interpolation, specifically Spherical Linear IntERPolation (SLERP), to the orientation control of the 6-axis articulated robot (RS2) using LabVIEW and RecurDyn. For the comparison of SLERP with linear Euler interpolation in the view of smooth movement (profile) of joint angles (torques), the two methods are dynamically simulated on RS2 by using both LabVIEW and RecurDyn. Finally, our original work, specifically the implementation of SLERP and linear Euler interpolation on the actual robot, i.e. RS2, is done using LabVIEW motion control tool kit. The SLERP orientation control is shown to be effective in terms of smooth joint motion and torque when compared to a conventional (linear) Euler interpolation.
文摘Image interpolation plays an important role in image process applications. A novel support vector machines (SVMs) based interpolation scheme is proposed with increasing the local spatial properties in the source image as SVMs input patterns. After the proper neighbor pixels region is selected, trained support vectors are obtained by training SVMs with local spatial properties that include the average of the neighbor pixels gray values and the gray value variations between neighbor pixels in the selected region. The support vector regression machines are employed to estimate the gray values of unknown pixels with the neighbor pixels and local spatial properties information. Some interpolation experiments show that the proposed scheme is superior to the linear, cubic, neural network and other SVMs based interpolation approaches.
文摘A new seismic ray-tracing method is put forward based on parabolic travel-time interpolation(PTI) method, which is more accurate than the linear travel-time interpolation (LTI) method. Both PTI method and LTI method are used to compute seismic travel-time and ray-path in a 2-D grid cell model. Firstly, some basic concepts are introduced. The calculations of travel-time and ray-path are carried out only at cell boundaries. So, the ray-path is always straight in the same cells with uniform velocity. Two steps are applied in PTI and LTI method, step 1 computes travel-time and step 2 traces ray-path. Then, the derivation of LTI formulas is described. Because of the presence of refraction wave in shot cell, the formula aiming at shot cell is also derived. Finally, PTI method is presented. The calculation of PTI method is more complex than that of LTI method, but the error is limited. The results of numerical model show that PTI method can trace ray-path more accurately and efficiently than LTI method does.
基金supported by the National Natural Science Foundation of China(6120109661471137+4 种基金61501061)the Qing Lan Project of Jiangsu Province,the Science and Technology Program of Changzhou City(CJ20130026CE20135060CE20145055)the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(1316)
文摘This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function constructed of the total energy of null subcarriers through discrete Fourier transform (DFT) is proposed. The frequencies of null subcarriers are identified from non-uniform Doppler shift at each tentative scaling factor. Then it is proved that the cost function can be fitted as a quadratic polynomial near the global minimum. An accurate Doppler scale estimation is achieved by the location of the global scarifying precision and increasing the computation minimum through polynomial interpolation, without complexity. A shallow water experiment is conducted to demonstrate the performance of the proposed method. Excellent performance results are obtained in ultrawideband UWA channels with a relative bandwidth of 67%, when the transmitter and the receiver are moving at a relative speed of 5 kn, which validates the proposed method.
基金Project(17D02)supported by the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,ChinaProject supported by the State Key Laboratory of Satellite Navigation System and Equipment Technology,China
文摘In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy.
基金Project(61071162) supported by the National Natural Science Foundation of China
文摘In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.
基金Project(12 High-tech Urban C22)supported by High-tech Urban Development Program,Ministry of Land,Transport and Moritime Affairs of Korea
文摘Practical techniques for smooth geodesic patterning of membrane structures were investigated.For the geodesic search,adjustment of the subplane of the extracted elements series was proposed,and various spline approximation methods were used to flatten the strip for the generation of a smooth pattern.This search approach is very simple,and the geodesic line could be easily attained by the proposed method without the need for a difficult computation method.Smooth cutting patterning can also be generated by spline approximation without the noise in discrete nodal information.Additionally,the geodesic cutting pattern saved about 21%of the required area for the catenary model due to the reduction of the curvature of the planar pattern seam line.
基金supported by the National Natural Science Foundation of China(61871146).
文摘Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.
基金supported by the National Natural Science Foundation of China(7137109871071077)+4 种基金Funding of Jiangsu Innovation Program for Graduate Education(KYZZ15 0093)Fundamental Research Funds for the Central Universities(2017301)Natural Science Fund Project of Colleges in Jiangsu Province(16KJD120001)Funding for Major Project of Jiangsu Social Science(16GLA001)Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics(BCXJ15-10)
文摘Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal values. To accomplish this, a new grey incidence model, called the grey dynamic incidence model GDIM(t), is constructed for determining whether the factors are effective to the known factor and what the time lag is between a useful factor and the specified sequence. Based on the results of the GDIM(t) model, two programming problems are designed to obtain the upper and lower bounds of the unknown or abnormal values which are regarded as grey numbers. The solutions based on the particle swarm optimization(PSO) for the nonlinear programming problems are given. To explain how it can be used in practice, this new grey interpolation approach is applied to correct an abnormal value in the sequence of an agriculture environment problem.
文摘This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.
基金Project(2010CB732103)supported by the National Basic Research Program of ChinaProject(51179092)supported by the National Natural Science Foundation of ChinaProject(2012-KY-02)supported by the State Key Laboratory of Hydroscience and Engineering,China
文摘Recently,the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems,however,the accuracy of this method depends on many factors and their influences are not fully investigated yet.In this work,three main factors,i.e.,the shape parameters,the influence domain size,and the nodal distribution,on the accuracy of the radial point interpolation method(RPIM)are systematically studied and conclusive results are obtained.First,the effect of shape parameters(R,q)of the multi-quadric basis function on the accuracy of RPIM is examined via global search.A new interpolation error index,closely related to the accuracy of RPIM,is proposed.The distribution of various error indexes on the R q plane shows that shape parameters q[1.2,1.8]and R[0,1.5]can give good results for general 3-D analysis.This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics.Second,through numerical experiments,an average of 30 40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics.Third,it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation.Nodal distributions with better uniformity give better results.Furthermore,how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.