A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve...A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.展开更多
For direct sequence spread spectrum (DSSS) receivers, the capability of rejecting narrow-band interference can be significantly improved by a process of frequency-domain interference suppression (FDIS). The key is...For direct sequence spread spectrum (DSSS) receivers, the capability of rejecting narrow-band interference can be significantly improved by a process of frequency-domain interference suppression (FDIS). The key issue of this process is how to determine a threshold to eliminate interference in the frequency domain, which has been extensively studied. However, these previous methods are tedious or very complex. A simple and ef- ficient algorithm based on medians is proposed. The elimination threshold is only related to the median by a scale factor, which can be obtained by the numerical analysis. Simulation results show that the algorithm provides excellent narrow-band interfer- ence suppression while only slightly degrading the signal-to-noise ratio (SNR). A one-pass algorithm using logarithmic segmentation is further derived to estimate medians with low computational complexity. Finally, the FDIS is implemented in a field programmable gate array (FPGA) of Xilinx. Experiments are carried out by connecting the FDIS FPGA to a DSSS receiver, and the results show that the receiver has an effective countermeasure for a 60 dB interference-to-signal ratio (ISR).展开更多
The single-carrier block transmission(SCBT),a.k.a.,single-carrier frequency-domain equalization(SC-FDE),is being considered as an option technique for the wireless personal area network(WPAN) operating at 60 GHz...The single-carrier block transmission(SCBT),a.k.a.,single-carrier frequency-domain equalization(SC-FDE),is being considered as an option technique for the wireless personal area network(WPAN) operating at 60 GHz.It is found that for residential environment,in non-line-of-sight(NLOS) multi-path channels,the SCBT is much more effective to combat the inter-symbol interference(ISI) compared with orthogonal frequency division multiplexing(OFDM).Low-density parity-check(LDPC) codes are a class of linear block codes which provide near capacity performance on a large collection of data transmission and storage channels while simultaneously admitting implementable decoders.To facilitate using LDPC codes for SCBT system,a new log-likelihood ratio(LLR) calculation method is proposed based on pilot symbols(PS).Golay Sequences whose sum autocorrelation has a unique peak and zero sidelobe are used for creating the PS.The position and length of the PS are not fixed in the data blocks.The simulation results show that the proposed method can significantly improve the LDPC decoding performance in SCBT system.This is very promising to support ultra high-data-rate wireless transmission.展开更多
基金Projects(41674080,41674079)supported by the National Natural Science Foundation of China
文摘A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.
基金supported by the National Natural Science Foundation of China(60904090)
文摘For direct sequence spread spectrum (DSSS) receivers, the capability of rejecting narrow-band interference can be significantly improved by a process of frequency-domain interference suppression (FDIS). The key issue of this process is how to determine a threshold to eliminate interference in the frequency domain, which has been extensively studied. However, these previous methods are tedious or very complex. A simple and ef- ficient algorithm based on medians is proposed. The elimination threshold is only related to the median by a scale factor, which can be obtained by the numerical analysis. Simulation results show that the algorithm provides excellent narrow-band interfer- ence suppression while only slightly degrading the signal-to-noise ratio (SNR). A one-pass algorithm using logarithmic segmentation is further derived to estimate medians with low computational complexity. Finally, the FDIS is implemented in a field programmable gate array (FPGA) of Xilinx. Experiments are carried out by connecting the FDIS FPGA to a DSSS receiver, and the results show that the receiver has an effective countermeasure for a 60 dB interference-to-signal ratio (ISR).
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the DoctoralProgram of Higher Education (20050004016)
文摘The single-carrier block transmission(SCBT),a.k.a.,single-carrier frequency-domain equalization(SC-FDE),is being considered as an option technique for the wireless personal area network(WPAN) operating at 60 GHz.It is found that for residential environment,in non-line-of-sight(NLOS) multi-path channels,the SCBT is much more effective to combat the inter-symbol interference(ISI) compared with orthogonal frequency division multiplexing(OFDM).Low-density parity-check(LDPC) codes are a class of linear block codes which provide near capacity performance on a large collection of data transmission and storage channels while simultaneously admitting implementable decoders.To facilitate using LDPC codes for SCBT system,a new log-likelihood ratio(LLR) calculation method is proposed based on pilot symbols(PS).Golay Sequences whose sum autocorrelation has a unique peak and zero sidelobe are used for creating the PS.The position and length of the PS are not fixed in the data blocks.The simulation results show that the proposed method can significantly improve the LDPC decoding performance in SCBT system.This is very promising to support ultra high-data-rate wireless transmission.