近几十年,格陵兰冰盖表面物质平衡(surface mass balance,SMB)和溢出冰川崩解造成冰盖物质损失加速,其中SMB的贡献近年来持续增大。因此,掌握SMB时空分布对于理解格陵兰冰盖物质平衡具有重要意义。然而,研究格陵兰冰盖SMB的2种主要手段...近几十年,格陵兰冰盖表面物质平衡(surface mass balance,SMB)和溢出冰川崩解造成冰盖物质损失加速,其中SMB的贡献近年来持续增大。因此,掌握SMB时空分布对于理解格陵兰冰盖物质平衡具有重要意义。然而,研究格陵兰冰盖SMB的2种主要手段中,区域气候模型模拟的SMB存在较大不确定性,溢出冰川通量门遥感观测仅能间接获得通量门上游流域整体的SMB值,难以反映SMB的空间分布。本研究提出了一种综合冰通量散度的格陵兰冰盖表面物质平衡遥感估算方法,能够较为准确地估算SMB空间分布:①利用ICESat-2卫星激光测高数据获取格陵兰冰盖高程年际变化量;②利用MEaSUREs冰流速遥感数据和BedMachine冰厚度数据,采用基于像元的有限差分法计算冰通量散度,估算冰流造成的冰盖高程变化,进而从ICESat-2冰盖高程变化中减去由冰流造成的冰盖高程变化,获得由SMB引起的冰盖高程变化;③利用粒雪密实化模型将SMB引起的高程变化转换为质量变化,即可反映格陵兰冰盖年际SMB空间分布。研究采用该方法估算了2019年与2020年格陵兰冰盖SMB空间分布,通过与观测站点实测SMB对比分析,表明本方法估算SMB的精度较高(RMSE为0.519 m w.e.),优于区域气候模型(RMSE为0.565~0.877 m w.e.),是一种较为可靠的格陵兰冰盖表面物质平衡时空分布遥感估算方法。展开更多
文摘近几十年,格陵兰冰盖表面物质平衡(surface mass balance,SMB)和溢出冰川崩解造成冰盖物质损失加速,其中SMB的贡献近年来持续增大。因此,掌握SMB时空分布对于理解格陵兰冰盖物质平衡具有重要意义。然而,研究格陵兰冰盖SMB的2种主要手段中,区域气候模型模拟的SMB存在较大不确定性,溢出冰川通量门遥感观测仅能间接获得通量门上游流域整体的SMB值,难以反映SMB的空间分布。本研究提出了一种综合冰通量散度的格陵兰冰盖表面物质平衡遥感估算方法,能够较为准确地估算SMB空间分布:①利用ICESat-2卫星激光测高数据获取格陵兰冰盖高程年际变化量;②利用MEaSUREs冰流速遥感数据和BedMachine冰厚度数据,采用基于像元的有限差分法计算冰通量散度,估算冰流造成的冰盖高程变化,进而从ICESat-2冰盖高程变化中减去由冰流造成的冰盖高程变化,获得由SMB引起的冰盖高程变化;③利用粒雪密实化模型将SMB引起的高程变化转换为质量变化,即可反映格陵兰冰盖年际SMB空间分布。研究采用该方法估算了2019年与2020年格陵兰冰盖SMB空间分布,通过与观测站点实测SMB对比分析,表明本方法估算SMB的精度较高(RMSE为0.519 m w.e.),优于区域气候模型(RMSE为0.565~0.877 m w.e.),是一种较为可靠的格陵兰冰盖表面物质平衡时空分布遥感估算方法。
文摘格陵兰冰盖物质平衡由其触地线处冰通量和表面物质平衡组成,表面物质平衡是冰盖表面物质收入和支出的净值,在近期格陵兰冰盖物质损失中占主导地位。本文基于荷兰皇家气象研究院开发的1 km区域气候模式RACMO2.3 p2日表面物质平衡数据,对1958-2022年格陵兰冰盖的表面物质平衡及其组分做了详细分析。结果表明,(1)格陵兰冰盖多年平均表面物质平衡为366.8 Gt·a^(-1),表面物质平衡区域差异明显,冰盖西侧中部为主要强消融区域(表面物质平衡<-1600 mm w.e.·a^(-1)),冰盖东南部的高降水特征导致此处积累区表现为高物质累积态,积累区下部年表面物质平衡超过3200 mm w.e.·a^(-1);(2)季节上,格陵兰冰盖表面物质平衡在冰盖尺度上夏季以负平衡为主,冬季以降水积累为主,呈现从沿海到内陆、从南到北递减的格局;其主要消融季从5月开始,7月达到顶峰(表面物质平衡为-123.8 Gt);(3)近60年来格陵兰冰盖表面物质平衡年际变化大,整体上,20世纪90年代之前,降水主导了表面物质平衡变化,20世纪90年代后,表面物质平衡的显著负趋势(-48.7 Gt·(10 a)^(-2),p<0.05)则由融水径流的快速增加所致;(4)空间上,由表面消融增加和再冻结能力下降导致的冰盖消融区普遍呈现负趋势(<-80 mm w.e.·(10 a)^(-2),p<0.05),冰盖东南部的表面物质平衡变化主要受降水变化驱动。格陵兰冰盖表面物质平衡受大气环流异常、辐射、反照率、海洋等因素影响,未来变暖背景下,冰盖表面物质平衡负趋势更为显著,并诱发海平面上升。